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1 Introduction

After establishing ground work on aesthetic manifestations in source code

for software developers during the Spring 2020 semester, I have concluded

with both an empirical manifestation of beautiful code, synthesized a ty-

pology of such manifestations—how code can be beautiful—and laid out a

preliminary investigation as to why code could be beautiful. Aesthetic man-

ifesations (”beauty”) seem to occur whenever facilitate the clarity of intent

of the writer, and the agency of the reader, are heightened. Beautiful code

makes the underlying concepts clear and easily-graspable, and facilitates

its modification by the reader by providing an error-free, and cognitively

easy way to do so.

Furthermore, I outlined several directions for further research. These in-

cluded the exploration of aesthetic standards for two additional cate-

gories of code writers: source code poets and hackers. Following discus-

sions around this outcome, I have added three other directions: literary

metaphors, architectural parallels and machine understanding. First, the

place of literary metaphors is a response to the cognitive stake at play in

reading and writing code, since code can be understood as a formal rep-
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resentation of mental models emerging from complex data structures and

their processing during execution time. Second, the parallels with archi-

tecture were suggested by a similar relationship to structure, planning and

construction. These parallels are, as we will see below, claimed by soft-

ware developers themselves, ranging from job titles to commercial best

practices of software patterns; on a more theoretical level, the approaches

to beauty in architecture will turn out to be productive lenses when thinking

not just about executed code, but about source code as well. Third, when

claiming that beautiful code facilitates understanding(s), it is important to

clarify whose understanding of what. While previous work has focused on

human understandings of human intentions, and human-made concepts,

this document investigates to what extent do computers, as concrete ma-

chines, understand anything.

I will start by examining instances of source code poetry, defining it, con-

textualizing it, and analyzing it through close-readings. This will allow us to

highlight specific aesthetic standards emerging from this corpus, namely

semantic layering and procedural rhetoric. Source code poetry, with this

clear emphasis on poetry, will then allow us to address the traditional re-

lationship between literature and code, on an artistic level as well as on a

linguistic one. The two concepts mentioned above will lead to an examina-

tion of the metaphor, from a literary and from a cognitive standpoint.

Particularly, the relationship that metaphors maintain to the process of

knowing and understanding will be highlighted both in human texts and in

program texts[1]. Connecting it to mental models will allow us to start think-

ing of these program texts in terms of structure, both surface-structure

and deep-structure, and address how a theoretical framework of aesthet-

ics might be connecting the two, including the place of imagination in ac-

quiring knowledge and building understanding in these texts.

Mentioning structure will thus lead us into the overlap between architecture

and software. After a short overview of how the two are usually related, I
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examine a particular set of aesthetic standards developed by Christopher

Alexander in his work on pattern languages. At the cursory level, these are

tied to software patterns, techniques for developing better software that

have emerged more out of practice rather than out of theory. At a deeper

level, we will see that the standards of beauty—or, rather, of this Quality

Without a Name—can be applied productively to better understand what

qualities are exhibited by a program that is deemed beautiful. In partic-

ular, Richard P. Gabriel’s work will further provide a connection between

software, architecture and poetry.

One particular aspect of architecture—the folly, the pavillion, and to some

extent large-scale installation artworks—will allow us to transition into our

next corpus: hacking. Hacking, defined further as seemingly-exclusively

functional codewill further requalify the need for aesthetics in source code.

Wewill see how this practice is focusedmuch less on human understanding

than on machine understanding, on producing code that is unreadable for

the former, and yet crystal-clear for the latter—with an emphasis on human

and machine performance. Despite a current lack of extensive research on

hacking-related program texts, we will look into two instances of these: the

one-liner and the demo to support our investigation in this domain.

This brings us to the broader question of human understanding and ma-

chine understandings. Starting from the distinction between syntax and

semantics, I highlight discrepancies between semantics in natural lan-

guages and semantics in programming languages to define machine un-

derstanding as an autotelic one, completely enclosed within a formal de-

scription. Coming back to Goodman, we will see how such a formal system

fits as a language of art, and yet remains ambiguous: is computation exclu-

sively concerned with itself, or can it be said that it relates to the rest of the

(non-computable) world? Additionally, the question of aesthetics within

programming languages themselves will be approached in a dual approach:

as linguistic constructs presenting affordances for creating program texts
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which exhibit aesthetic properties, and as objects with aesthetic proper-

ties themselves. Whether or not we can agree on machine understanding,

the formalism of programming languages, and their aesthetic possibilities,

provide an additional perspective on the communication of non-obvious

concepts inherent to computing.

In conclusion, we will see that aesthetics in code is not exclusively a literary

affair in the strict sense of the term, but is rather at the intersection of liter-

ature, architecture and problem-solving, insofar as they manifest through

the (re-)presentation of complex concepts and multi-faceted uses, involv-

ing their writers and readers in semantics-heavy cognitive processes and

mental structures.

Finally, I suggest further directions for research.
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2 Programming and literary theory

This section focuses on source code poetry, as the closest use of ”literary

arts” involving code. We will see how this particular way of writing soft-

ware, to an explicitly aesthetic end, rather than a functional one, summons

specific claims to art and beauty. These claims maintain a complex rela-

tionship to the nature and purpose of code, in certain ways embracing the

former, and moving away from the latter, but nonetheless allow us to more

clearly define such a nature and such purposes. After an overview of the

field, including delimitation of our corpus, I will highlight and analyze par-

ticular source code poems, chosen for their meaning-making affordances,

and conclude on the aesthetic standards at play in their reading andwriting,

expanding on notions of double-meaning and double-coding.

2.1 Computer-aided literature

Source code poetry is a distinct subset of electronic literature. A broad

field encompassing natural language texts taking full advantage of the dy-

namic feature of computing to redefine the concept of text, authorship and

readership, it nonetheless encompasses a variety of approaches, including

generative literature, interactive fiction, visual poetry, source code poetry

and esoteric programming languages, as well as certain aspects of soft-

ware art. However, one of the distinctions that can be made in defining

the elements of electronic literature which are included in our corpus is, in

line with the framework of this research, the shift from output to input, for

executable binary to latent source.

2.1.1 Literature through executed code

A large section of the works which fall within electronic literature focus on

the result of an executed program, often effectively obfuscating one of the
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many chained acts of writing1 which allow for the very existence of these

works. For instance, the influence of Colossal Cave Adventure[2], the first

work of interactive fiction, has been centered around on the playable out-

put of the software, rather than on its source code. Written in FORTRAN

4 between 1975 1977, it exhibits several features which wouldn’t fit within

the typology we’ve previously established, particularly in terms of variable

naming (e.g. variables such as ‘KKKT‘, ‘JSPK‘; or ‘GOTO‘ statements, whose

harm has been considered at the same time this codewaswritten2). Colos-

sal Cave Adventure’s source code was indeed only examined due to the

recognition of the cultural influence of the game, decades later, and not

for its intrinsic properties.

A more contemporary example would be that of the Twine game engine,

lowering the barrier to entry for writing interactive fictions in the age of

the hyperlink. The result, while aesthetically satisfying, widely recognized

and appreciated by the interactive fiction community, nonetheless consists

in a single HTML document, comprising well-formatted and understand-

able HTML and CSS markups, along with three single lines of ”uglified”

JavaScript3. The explicit process of uglification4 relies on the assumption

that no one would, or should, read the source code.

In the case of visual poetry, one can see how the source code of works such

as bpNichol’s First Screening5, is dictated exclusively by the desired out-

put, with a by-product of visually pleasing artifacts throughout the code

as foreshadowing the result to come6. It is a literal description of static,

1See: Béatrice Fraenkel on chains of writing
2retrieved from: https://jerz.setonhill.edu/if/crowther/advf4.77-03-11
3For instance, the source code of https://pierredepaz.net/-/who/ consists of three lines of

52980 characters, and only 682 whitespace characters
4We could expand on this process of uglification, which consists of compacting humanly-

laid out source code into the small possible number of characters, usually for a production-

ready build, optimized for loading times and dependency processing.
5https://www.vispo.com/bp/download/FirstScreeningBybpNichol.txt
6Still, a lovely artefact is the subroutine at line 1600, an ”offscreen romance” only visible
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desired output, more akin to a cinematic timeline editor, in which there is

a 1:1 relationship between the clips laid out and the final reel, and no room

for unexpected developments. While computer-powered, such an example

of visual poetry tend to side-step the potentiality of computing, of which

source code is one of the descriptive symbol systems: each execution of

the code is going to be exactly the same as the previous one, and the same

as the next one7. While this might be a drastic example, in which unknowns

are reduced to a minimum, visual poetry and interactive do rely heavily on

the dynamic aspect of computer procedures to create aesthetic experi-

ences8. The difference I am making here is that such aesthetic experience

are claimed to take place in the realization of the computer-aided poten-

tials of the work, rather than in the textual description of these potentials9.

These examples, while far from being exhaustive, nonetheless show how

little attention is paid to the source code of these works, since they are

clearly—and rightly so—not their most important part.

Computer poetry, an artform based on the playful détournement of the

computer’s constraints, gets closer to our topic insofar as the poems gen-

erated represent a more direct application of the rule-based paradigm to

the syntactical output of the program. Startingwith Christopher Stratchey’s

love letters, generated (and signed!) byMUC, theManchester UnivacCom-

puter, computer poems are generated by algorithmic processes, and as

such rely essentially on this particular feature of programming, laying out

rules in order to synthesize syntactically and semantically sound natural

language poems. Here, the rules themselves matter as much as the out-

put, a fact highlighted by their ratio: a single rule for a seemingly-infinite

amount of outputs.

in the source.
7Barring any programmer-independent variables, such as hardware and software platform

differences.
8For instance, see Text Rain, by Camille Utterbach and Romy Achituv
9Tellingly, the Smithsonian Museum, which acquired Text Rain, makes no mention of the

source code of the piece.
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These works and their authors build on a longer tradition of rule-based

composition, from Hebrew to the Oulipo and John Cage’s indeterministic

composition, amongst many others[3], a tradition in which creativity and

beauty can emerge fromwithin a strict framework of formal rules. Nonethe-

less, the source code to these works is rarely released in conjunction with

their output, hinting again at their lesser importance in terms of their over-

all artistic values. If computer poetry is composed of two texts, a natural-

language output and a computer-language source, only the former is actu-

ally considered to be poetry, often leaving the latter in its shadow (as well

as, sometimes, it’s programmer, an individual sometimes different from the

poet). The poem exists through the code, but isn’t exclusively limited to

the humanly-readable version of the code, as it only comes to life and can

be fully appreciated, under the poet’s terms, once interpreted or compiled.

While much has been written on computer poetry, few of those commen-

taries focus on the soundness and the beauty of the source as an essential

component of the work, and only in recent times have we seen the emer-

gence of close-readings of the source of some of these works for their own

sake10. These do constitute a body of work centered around the concept

of generative aesthetics[4], in which beauty comes from the unpredictable

and somewhat complex interplay of rule-based systems, and whose mani-

festations encompass not only written works, but games, visual and musi-

cal works as well; still, this attention to the result make these works fall on

the periphery of our current research.

The aspects of electronic literature examined so far still require computer

execution in order to be fully realized as aesthetic experiences. We now

turn to these works which still function as works of explicit aesthetic value

primarily through the reading of their source. We will examine obfuscated

code and code poetry (both at the surface level and at the deep level), to

10See the publications in the field of Critical Code studies, Software studies and Platform

studies.
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finally delimitate our corpus around the last one.

2.1.2 Literature through source code

One of the earliest instances of computer source written exclusively to

elicit a human emotional reaction, rather than fulfill any immediate, prac-

tical function, is perhaps the Apollo 11 Guidance Computer (AGC) code,

written in 196911 in Assembly. Cultural references and jokes are peppered

throughout the text as comments, asserting computer code as a means of

expression beyond exclusively technical tasks12, and independent from a

single writer’s preferences, since they passed multiple checks and review

processes to end up in the final, submitted and executed document.

663 STODL CG

664 TTF/8

665 DMP* VXSC

666 GAINBRAK,1 # NUMERO MYSTERIOSO

667 ANGTERM

668 VAD

669 LAND

670 VSU RTB

Code comments allow a programmer to write in their mother tongue, rather

than in the computer’s, enablingmore syntactic and semantic flexibility, and

thus reveal a burgeoning desire for programmers to express themselves

within their medium of choice.

At the turn of the 1980s, following the transition to programming from an

annex practice to full-fledged discipline and profession, along with the de-

velopment of more expressive programming languages (e.g. Pascal in 1970,

C in 1972), software development has become a larger field, growing expo-

nentially13, and fostering practices, communities and development styles

11Hamilton et. al., 1969, retrieved from https://github.com/chrislgarry/Apollo-11
12See also: ”Crank that wheel”, ”Burn Baby Burn”
13Source: https://insights.stackoverflow.com/survey/2019#developer-
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and patterns14. Source code becomes recognized as a text in its own,

which can hold qualities and defects of its own, and to which engineer-

ing and artistic attention must be paid. No longer a transitional state from

formula to binary, it becomes a semantic material, whose layout, organiza-

tion and syntax are important to the eyes of its writers and readers. Pushing

further into the direction of the visual layout of the code, such an endeav-

our becomes pursued for its own sake, equally important to the need for a

program to be functional.

The Obfuscated C Code Contest15 is the most popular and oldest orga-

nized production of such code, in which programmers submit code that is

functional and visually meaningful beyond the exclusive standards of well-

formatted code. If the source code’s meaning was previously entirely sub-

sumed into the output in computer poetry, and if such a meaning existed

in parallel in the comments of the AGC routines, pointing at the overlay

of computer-related semantics (e.g. line numbers) and human-related se-

mantics (e.g. number of the beast), obfuscated code is a first foray into

closely intertwining these separate meanings in the source code itself,

making completely transparent, or completely opaque what the code does

just by glancing at it.

profile-_-years-since-learning-to-code
14From Djikstra’s Notes on Structured Programming to Knuth’s Literate Programming and

Martin’s Clean Code
15https://ioccc.org
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#define _ -F<00||--F-OO--;

int F=00,OO=00;main(){F_OO();printf(”%1.3f\n”,4.*-F/OO/OO);}F_OO()

{

_-_-_-_

_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_

_-_-_-_

}

The above submission to the 1988 IOCCC16 is a procedure which does ex-

actly what it shows: it deals with a circle. More precisely, it estimates the

value of PI by computing its own circumference. While the process is far

from being straightforward, relying mainly on bitwise arithmetic operations

and a convoluted preprocessor definition, the result is nonetheless very

intuitive—the same way that PI is intuitively related to PI. The layout of the

code, carefully crafted by introducing whitespace at the necessary loca-

tions, doesn’t follow any programming practice of indentation, and would

probably be useless in any other context, but nonetheless represents an-

other aspect of the concept behind the procedure described, not relying on

traditional programming syntax17, but rather on an intuitive, human-specific
16Source: https://web.archive.org/web/20131022114748/http://www0.us.

ioccc.org/1988/westley.c
17For such a program, see for instance: https://crypto.stanford.edu/pbc/notes/
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understanding18.

Obfuscating practices, beyond their technical necessities (for security and

efficiency), are traditionally tied to hacking practices, prominently with one-

liners. As such, they rely on the brain-teasing process of deciphering, and

on the pleasurable, aesthetic experience of resolving and uniting two par-

allel meanings: what we see in the code, and what it does19. What we focus

on here is the aspect of obfuscation which plays with the different layers of

meaning: meaning to the computer, meaning to the human, and different

ways of representing and communicating this meaning (from uglifying, to

consistent formatting, to depicting a circle with dashes and underscores).

While the aesthetics at play in hackingwill be further explored below, we fo-

cus on the fact that obfuscating code practices, beyond hiding themeaning

and the intent of the program, also manifest an attempt to represent such a

meaning in different ways, leaving aside traditional code-writing practices

and suggesting the meaning of the program by challenging the abilities of

human interpretation at play in the process of deciphering programs.

2.2 Source code poetry

It is this overlap of meaning which appears as a specific feature of source

code poetry. In a broad sense, code poetry conflates classical poetry (as

strict syntactical and phonetical form, along with poetic expressivity) with

computer code, but it is primarily defined by the fact that it does not require

the code to be executed, but only to be read by a human. Following the

threads laid out by computer poetry and obfuscated code, code poetry

starts from this essential feature of computers to work with strictly defined

formal rules, but departs from it in terms of utility. Source code poems are

pi/code.html
18Concrete poetry also makes such a use of visual cues in traditional literary works.
19Also known informally as the ”Aha!” moment, crucial in puzzle design.
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only functional insofar as they are accepted by the intepreter or compiler of

the language in which they are written. To the computer, they are indeed

functional, in that they are legal and can be parsed; but they do not do

anything of use. Such formal compliance is only a pre-requisite, a creative

constraint, for their human writers.

Within this reliance on creative constraints provided by a computing en-

vironment, the emphasis here is on the act of reading, rather than on the

act of deciphering, as we’ve seen with obfuscated code (and in functional

code in general). Source code poems are often easy to read20, and have

an expressive power which operates beyond the common use of program-

ming. Starting from Flusser’s approach, I consider poetry as a means to

bring concepts into the thinkable, and to crystallize thoughts which are not

immediately available to us[5]; through various linguistic techniques, poetry

allows us to formulate new concepts and ideas, and to shift perspectives.

In their different manifestations, code poems make the boundary between

computer meaning and human meaning thinner and thinner, a feature of-

ten afforded by the existence and use of higher-level programming lan-

guages. With the development of FLOWMATIC in 1955 by Grace Hopper, it

was shown that an English-like syntactical system could be used to com-

municate concepts for the computer to process. From there, programming

languages could be described along a gradient, with binary at the lowest

end, and natural language (in an overwheling majority, English) at the high-

est end. This implies that they could bewritten and read similarly to English,

including word order, pronouncation and interpretation, similar to the error-

tolerance of human laguages, which doesn’t make the whole communica-

tion process fail whenever a specific word, or a word order isn’t understood.

20See perl haikus in particular
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2.2.1 Static code poetry

The community of programmers writing in Perl21 has been one of the most

vibrant and productive communities when it comes to code poetry. Such

a use of Perl started in 1990, when the language creator Larry Wall shared

some of the poems written in the language, and it gained further exposition

through the work of Shannon Hopkins[6]. The poem Black Perl, submitted

anonymously, is a representative example of the productions of this com-

munity:
#!/usr/bin perl
no warnings;

BEFOREHAND: close door, each window & exit; wait until time.
open spellbook, study, read (scan, $elect, tell us);

write it, print the hex while each watches,
reverse its, length, write, again;

kill spiders, pop them, chop, split, kill them.
unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn ”the goats” & kill ”the sheep”);

kill them, dump qualms, shift moralities,
values aside, each one;

die sheep? die to : reverse { the => system
( you accept (reject, respect) ) };

next step,
kill ‘the next sacrifice‘, each sacrifice,
wait, redo ritual until ”all the spirits are pleased”;

do { it => ”as they say” }.
do { it => (*everyone***must***participate***in***forbidden**s*e*

x*)
+ }.
return last victim; package body;

exit crypt (time, times & ”half a time”) & close it,
select (quickly) & warn your (next victim);

AFTERWARDS: tell nobody.
wait, wait until time;

wait until next year, next decade;
sleep, sleep, die yourself,
die @last

The most obvious feature of this code poem is that it can be read by any-

one, including by readers without previous programming experience: each

word is valid both as English and as Perl. A second feature is the abundant

use of verbs. Perl belongs to a family of programming languages grouped

21See: perlmonks, with the spiritual, devoted and communal undertones that such a name

implies.
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under the imperative paradigm, which matches a grammatical mood of nat-

ural languages, the imperative mood. Such mood emphasizes actions to

be take rather than, for instance, descriptions of situations, and thus sets

a clear tone for the poem. The fact that Perl is based on stating proce-

dures to be executed and states to be changed creates this feeling of re-

lentless urgency when reading through the poem, a constant need to be

taking actions, for things to be changed. Here, the native constraints of

the programming language interacts directly with the poetic suggestion of

the work in a first way: the nature of Perl is that of giving orders, result-

ing in a poem which addresses someone to execute something. Still, Perl’s

flexibility leaves us wondering as to who and what are concerned by these

orders. Is the poem directing its words to itself? To the reader? Is Perl just

ever talking exclusively to the computer? This ambiguity of the adressee

adds to the ominousness of each verse.

The object of each of these predicates presents a different kind of ambi-

guity: earlier versions of Perl function in such a way that they ignore un-

known tokens2223. Each of the non-reserved keywords in the poem are

therefore, to the Perl interpreter, potentially inexistant, allowing for a large

latitude of creative freedom from the writer’s part. Such a feature allows

for a tension between the strict, untoucheable meaning of Perl’s reserved

keywords, and the almost infinite combination of variable and procedure

names and regular expressions. This tension nonetheless happens within

a certain rhythm, resulting from the programming syntax: kill them, dump

qualms, shift moralities, here alternating the computer’s lexicon and the

poet’s, both distinct and nonetheless intertwined to create a Gestalt, a

whole which is more than the sum of its parts.

A clever use of Perl’s handling of undefined variables and execution order

22e.g. undefined variables do not cause a core dump.
23Which results in the poem having to be updated/ported, in this case by someone else

than the original writer
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allows the writer to use keywords for their human semantics, while subvert-

ing their actual computer function. For instance, the die function should

raise an exception, but wrapped within the exit () and close keywords,

the command is not interpred and therefore never reaches the execution

point, bypassing the abrupt interruption. The subversion here isn’t purely

semiotic, in the sense of what each individual word means, but rather in

how the control flow of the program operates—technical skill is in this case

required for artistic skill to be displayed.

Finally, the use of the BEFOREHAND: and AFTERWARDS: words mimick comput-

ing concepts which do not actually exist in Perl’s implementation: the pre-

processor and post-processor directives. Present in languages such a C,

these specify code which is to be executed respectively before and af-

ter the main routine. In this poem, though, these patterns are co-opted to

reminisce the reader of the prologue and epilogue sometimes present in

literary texts. Again, these seem to be both valid in computer and human

terms, and yet seem to come from different realms.

This instance of Perl poetry highlights a couple of concepts that are par-

ticularly present in code poetry. While it has technical knowledge of the

language in common with obfuscation, it departs from obfuscated works,

which operate through syntax compression, by harnessing the expressive

power of semiotic ambiguity, giving new meaning to reserved keywords.

Such an ambiguity is furthermore bi-directional: the computing keywords

become imbued with natural language significance, bringing the lexicon of

the machine into the realm of the poetic, while the human-defined vari-

able and procedure names, and of the regular expressions, are chosen as

to appear in line with the rhythm and structure of the language. Such a

work highlights the co-existence of human and machine meaning inherent

to any program text24.

24Except perhaps those which deal exclusively with scientific and mathematical concepts
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2.2.2 Dynamic code poetry

class Proc
def in_discomfort?; :me; end

end
you_are = you =

->(you) do
self.inspect until true
until nil

break you
end

puts you.in_discomfort?
you_are[you]

end

you[
you_are

]

The poem above, written in Ruby by maca25 in 2011 and titled self_inspect

.rb, opens up an additional perspective on the relationship between aes-

thetics and expressivity in source code. Immediately, the layout of the

poem is reminiscent both of obfuscated works and of free-verse poetry,

such as E.E. Cummings’ and Stéphane Mallarmé’s works26. This particular

layout highlights the ultimately arbitrary nature of whitespace use in source

code formatting: self_inspect.rb breaks away from the implicit rhythm em-

braced in Black Perl, and links to the topics of the poem (introspection and

unheimlichkeit) by abandoningwhat are, ultimately, social conventions, and

reorganizing the layout to emphasize both keyword and topic, exemplified

in the end keyword, pushed away at the end of their line.

The poem presents additional features which operate on another level,

halfway between the surface and deep structures of the program text.

First, the writer makes expressive use of the syntax of Ruby by involving

data types. While Black Perl remained evasive about the computer seman-

tics of the variables, such semantics take here an integral part. Two data

types, the array and the symbol are used not just exclusively as syntactical

25https://github.com/maca
26Particularly Un coup de dés jamais n’abolira le hasard.
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necessities (since they don’t immediately fulfill any essential purpose), but

rather as semantic ones. The use of :me on line 2 is the only occurence of

the first-person pronoun, standing out in a poem littered with references to

you. Symbols, unlike variable names, stand for variable or method names.

While you refers to a (hypothetically-)defined value27, a symbol refers to a

variable name, a variable name which is here undefined. Such a reference

to a first-person pronoun implies at the same time its ever elusiveness.

It is here expressed through this specific syntactic use of this particular

data type, while the second-person is referred to through regular variable

names, possibly closer to an actual definition. It is a subtlety which doesn’t

have an immediate equivalent in natural language, and by relying on the

concept of reference, hints at an essential différance between you and me.

Reinforcing this theme of the elusiveness of the self, maca plays with the

ambiguity of the value and type of you and you_are, until they are revealed

to be arrays. Arrays are basic data structures consisting of sequential val-

ues, and representing you as such suggests the concept of the multiplicity

of the self, adding another dimension to the theme of elusiveness. The

discomfort of the poem’s voice comes from, finally, from this lack of clear

definition of who you is. Using you_are as an index to select an element of

an array, subverts the role suggested by the declarative syntax of you are.

The index, here, doesn’t define anything, and yet always refers to some-

thing, because of the assigment of its value to what the lambda expression

-> returns. This further complicates the poem’s attempt at defining the

self, returning the reverse expression you_are[you]. While such an expres-

sion might have clear, even simple, semantics when read out loud from a

natural language perspective, knowledge of the programing language re-

veals that such a way to assign value contributes significantly to the poem’s

expressive abilities.

A final feature exhibited by the poem is the execution of the procedure.

27A variable name can represent a value and/or a memory address
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When running the code, the result is an endless output of print statements

of ”me”, since Ruby interprets the last statement of a program as a return

value to be printed:
...
me
me
me
me
me
me
me
me
me
me
me
me
me
me
me
me
Traceback (most recent call last):

11913: from poem.rb:16:in ‘<main>’
11912: from poem.rb:13:in ‘block in <main>’
11911: from poem.rb:13:in ‘block in <main>’
11910: from poem.rb:13:in ‘block in <main>’
11909: from poem.rb:13:in ‘block in <main>’
11908: from poem.rb:13:in ‘block in <main>’
11907: from poem.rb:13:in ‘block in <main>’
11906: from poem.rb:13:in ‘block in <main>’
... 11901 levels...

4: from poem.rb:13:in ‘block in <main>’
3: from poem.rb:13:in ‘block in <main>’
2: from poem.rb:12:in ‘block in <main>’
1: from poem.rb:12:in ‘puts’

self_inspect.rb:12:in ‘puts’: stack level too deep (SystemStackError)

The computer execution of the poem provides an additional layer of mean-

ing to our human interpretation. Through the assignment of you_are in an

until loop, the result is an endless succession of the literal interpretation

of the symbol :me, the actual result of being in discomfort. While we’ve

seen that a symbol only refers to something else, the concrete28 output of

the poem evokes an insistence of the literal self, exhibiting a different tone

than a source in which the presence of the pronoun you is clearly dominant.

Such a duality of concepts is thus represented in the duality of a concise

source and of an extensive output, and is punctuated by the ultimate im-
28Both in terms of actual, and in terms of concrete poetry
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possibility of the machine to process the accumulation of these intertwined

references to me and you, resulting in a stack overflow error.

The added depth of meaning from this code poem goes beyond the syn-

tactic and semantic interplay immediately visible when reading the source,

as the execution provides a result whose meaning depends on the co-

existence of both source and output. Beyond keywords, variable names

and data structures, it is also the procedure itself which gains expres-

sive power: a poem initially about you results in a humanly infinite, but

hardware-bounded, series of me29.

2.3 Theoretical frameworks of source code poetry

These analyses of program texts have highlighted some of the aesthetic

features of source code which can elicit a poetic experience during both

reading and execution. These can be further qualified through several con-

cepts, which I introduce and extend here.

The first is double-meaning, taken from Camille Paloque-Bergès’s work on

networked texts, and her analysis of code poetics[7]. She defines it as

the affordance provided by the English-like syntax of keywords reserved

for programming to act as natural-language signifiers. As we’ve seen in

Black Perl, the Perl functions can indeed be interpreted as regular words

when the source is read as a human text. Starting from her analysis of

codeworks, a body of literature centered around a créole language halfway

between humanspeak and computerspeak30, it can be extended into the

aesthetically productive overlap of syntactic realms.

Previous research by Philippe Bootz has also highlighted the concept of the

double-text in the context of computer poetry, a text which exists both in

29Another productive comparison could be found in Stein’s work, Rose is a rose is a rose...
30See in particular the work of Alan Sondheim and mezangelle
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its prototypal, virtual, imagined form, under its source manifestation, and

which exists as an instantiated, realized one[8]. However, he asserts that,

in its virtual form, ”a work has no reality”, specifically because it is not real-

ized. Here again, we encounter the dependence of the source on its real-

ized output, indeed a defining feature of the generative aesthetics of com-

puter poetry. As we’ve seen in the self_inspect.rb poem, a work of code

poetry can very much exist in its prototypal form, with its output providing

only additional meaning, further qualifying the themes laid out in source

beforehand. Indeed, the output of that poem would have a drastically di-

minished semantic richness if the source isn’t also read and understood.

For this double-meaning to take place, we can say that the sitation is in-

verted: the output becomes the virtual, imagined text, while the source is

the concrete instantiation of the poem.

Second, we draw on Geoff Cox and Alex McLean’s concept of double-

coding[9]. According to them, double-coding ”exemplifies the material as-

pects of code both on a functional and an expressive level” (p.9). Cox and

McLean’s work, in a thorough exploration of source code as an expres-

sive medium, focus on the political features of speaking through code, as

a subversive praxis. They work on the broad social implications of written

and spoken31 code, rather than exclusively on the specific features of what

makes source code expressive in the first place. Double-coding nonethe-

less helps us identify the unique structural features of programming lan-

guages which support this expressivity. As we’ve briefly investigated, no-

tably through the use of data types such as symbols and arrays in source

code poetry, programming languages and their syntax hold within them a

specific kind of semantics which hold, for those who are familiar with them

and understand them, expressive power, once the data type is understood

both in its literal sense, and in its metaphorical one. The succint and rel-

evant use of these linguistic features can thicken the meaning of a poem,

31Which they conflate with the practice of live-coding
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bringing into the realm of the thinkable ways to approachmetaphysical top-

ics.

Finally, the tight coupling of the source code and the executed result brings

up Ian Bogost’s concept of procedural rhetoric[10]. Bogost presents pro-

cedures as a novel means of persuasion, along verbal and visual rhetorics.

Working within the realm of videogames, he outlines that the design and

execution of processes afford particular stances which, in turn, influence a

specific worldview, and therefore arguing for the validity of its existence.

Further work has shown that source code examination can already rep-

resent these procedures, and hence construct a potential dynamic world

from the source[11]. If procedures are expressive, if they can map to partic-

ular versions of a world which the player/reader experiences32, then it can

be said that their textual description can also already persuasive, and elicit

both rational and emotional reactions due to their depiction of higher-order

concepts (e.g. consumption, urbanism, identity, morality). As its prototy-

pal version, source code acts as the pre-requisite for such a rhetoric, and

part of its expressive power lies in the procedures it deploys (whether from

value assignment, execution jumps or from its overall paradigms33). Man-

ifested at the surface level through code, these procedures however run

deeper into the conceptual structure of the program text, and such con-

ceptual structures can nonetheless be echoed in the lived experiences of

the reader.

We’ve seen through this section that the poetic expressivity of source

code poems rely on several aesthetic mechanisms, which can be com-

bined for further expressive effect. From layout and syntactic obfuscation,

to double-meaning through variables and procedure names, double-coding

and the integration of data types and functional code into a program text

and a rhetoric of procedures in their written form, all of these activate the

32Versions of worlds can be explored further through Goodman’sWays of Worldmaking
33e.g. declarative, imperative, functional

22



connection between programming concepts and human concepts to bring

the unthinkable within the reach of the thinkable. The next section will ex-

plore this connection further, in terms of mental models, literary metaphors

and cognitive structures.
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3 Metaphors and Mental Models

This section focuses on metaphors and mental models in both program-

ming and literature, and how they’re related to understanding and cogni-

tion, both in broad terms and in specific texts. The evokative power of

the excerpts seen above make ample use of the multiple facets of under-

standing, switching from one frame to the other. This switch relates to

the most commonly used definition of metaphor: that of labeling one thing

in terms of another, thereby granting additional meaning to the subject at

hand. Our approach here will bypass some of the more minute distinctions

made between metonymy (in which the two things mentioned are already

conceptually closely related), comparison (explicitly assessing differences

and similarities between two things, often from a value-based perspective)

and synechdoche (representing a whole by a subset), as they all relate to

a larger, more contemporary definition of the concept.

3.1 Theoretical approaches to metaphors

This part of the thesis relies especially on the works of George Lakoff and

Mark Johnson, and of Paul Ricoeur, due to their requalification of the nature

and role of metaphor in the 20th century. While Lakoff and Johnson’s ap-

proach to the conceptual metaphor will serve a basis to explore metaphors

in the broad sense across software and narrative, I also argue that Ricoeur’s

focus on the tension of the statement rather than primarily on the word will

help us better understand some of the aesthetic manifestations of software

metaphors, without being limited to tokens. Following a brief overview of

their contributions, I examine the various uses of metaphor in software and

in literature, touch upon the cognitive turn in literary studies, and conclude

the section by the ambiguity of a cognitive account of programming.

Lakoff and Johsnon’s seminal work develops a theory of conceptual
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metaphors by highlighting their essential dependence on pre-existing cog-

nitive structures, which we associate with already-understood concepts.

The metaphor maps a source domain (made up of cognitive structure(s))

to a target domain. In the process, they extend the field of applicability of

metaphors from the strictly literary to the broadly cultural: metaphors work

because each of us has some conception of those domains involved in the

metaphorical process. Metaphors rely in part on a static understanding, re-

sulting in a fixed meaning from the application of a given source to a given

target. Some of these sources are called schemas, and are defined enough

to not be mistaken for something else, but broad enough to allow for mul-

tiple variants of itself to be applied to various targets[12], providing both

diversity and reliability. As we will see below, their approach allows us to

focus not just on textual objects, but on the vast range of metaphors used

specifically in computing-related environments. Given that the source of

the metaphor should be grounded, with as little invariablity as possible, in

order to qualify a potentially ill-defined target domain, this provides us with

a first foray into the inherent elusiveness and instability of computing when

presented to a broader audience.

Going beyond the role of metaphors manifested in expressions such as the

desktop, the mouse, or the cloud, we will explore Lakoff’s understanding

of the specifically poetic metaphor further below as preliminary work to

assess the linguistic component of computing—source code. For now, to

complement his broadening of the metaphorical field, we turn to Paul Ri-

coeur’s assessment of it.

Writing in The Rule of Metaphor, Ricoeur operates two shifts which will help

us better assess not just the inherent complexity of program texts, but the

ambivalence of programming languages as well. His first shift regards the

locus of the metaphor, which he saw as being limited to the single word—a

semiotic element—to the whole sentence—a semantic element[13]. This

operates in parallel with his attention to the lived feature of the metaphor,

25



insofar it exists in a broader, vital, experienced context. Approaching the

metaphor while limiting it to words is counterproductive because words

refer back to ”contextually missing parts”—they are eminently overdeter-

mined, polysemic, and belong to a wider network meaning than a single,

one-to-one relationship34. Looking at it from the perspective of the sen-

tence brings this rich network of potential meanings and broadens the

scope for interpretation. As we’ve briefly touched upon in the previous

section when reading self_inspect.rb, all of the evocative meaning of the

poem isn’t contained exclusively in each token, and the power of the whole

is greater than the sum of its parts.

Secondly, Ricoeur inspects a defining aspect of a metaphor by the tensions

it creates. His analysis builds from the polarities he identifies in discourse

between event (time-bound) and meaning (timeless), between individual

(subjective, located) and universal (applicable to all) and between sense

(definite) and reference (indefinite)35. The creative power of the metaphor

is its ability to both create and resolve these tensions, to maintain a balance

between a literal interpretation, and a metaphorical one—between the im-

mediate and the potential, so to speak. Tying it to the need for language to

be fully realized in the lived experience, he poses metaphor as a means to

creatively redescribe reality. As we will be approaching the topic of syntax

and semantics in programming languages, we will see that these tensions

can be a fertile ground for poetic creation through aesthetic manifestations.

34As he sees it in the traditional, Aristotelician sense of the term.
35For the extent to which source code can be considered discourse has been discussed,

see: Cox and McLean, Speaking Code.
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3.2 Metaphors in literature

3.2.1 Functions of metaphors

If the conceptual turn initiated by Lakoff and Johnson’s analysis of the

metaphor broadens the horizon of their applicability beyond the strict do-

main of literature, it is nonetheless clear that metaphors appear and oper-

ate in particular ways in literary works, from fiction to poetry. We look at

such specificity here in anticipation of identifying which features of poetic

metaphors could be mapped to the program texts of our corpus—whether

explicitly poetic, as in source code poetry, or not, as in regular source code.

So while Lakoff bases poetic metaphors on the broader metaphors of the

everyday life, he also operates the distinction that, contrary to conventional

metaphors which are sowidely accepted that they go unnoticed, the poetic

metaphor is non-obvious. Which is not to say that it is convoluted, but

rather that it is new, unexpected, that it brings something previously not

thought of into the company of broad, conventional metaphors—concepts

we can all relate to because of the conceptual structures we are already

carry with us, or are able to easily integrate. This echoes our mention of

Flusser’s analysis of poetry as that which brings ideas into the realm of the

thinkable.

It does so along four different axes, in terms of how the source domain af-

fects the target domain that is connected to. First, a source domain can

extend its target counterpart: it pushes it in an already expected direc-

tion, but does so even further, sometimes creating a dramatic effect by

this movement from conventional to poetic. For instance, a conventional

metaphor would be saying that ”Juliet is radiant”, while a poetic one might

extend the attribution of positivity associated with brightness by saying

”Juliet is the sun36.

Poeticmetaphors can also elaborate, by addingmore dimensions to the tar-
36From Romeo and Juliet, Act 2, Scene 2
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get domain, while nonetheless being related to its original dimension. Here,

dimensions are themselves categories within which the target domain usu-

ally falls (e.g. the sun has an astral dimension, and a sensual dimension).

Naming oneself as The Sun-King brings forth the additional dimension of

hierarchy, along with a specific role within that hierarchy—the sun being at

the center of the then-known universe.

Metaphors gain poetic value when they put into question the conventional

approaches of reasoning about, and with, a certain target domain. Here is

perhaps the most obvious manifestation of the non-obvious requirement,

since it quite literally proposes something that is unexpected from a con-

ventional standpoint. When Camus describes Tipasa’s countryside as be-

ing blackened from the sun37, it subverts our pre-conceptions about what

the countryside is, what the sun does, and hints at a semantic depth which

would go on to support a whole philosophical thought (la pensée de midi).

Interestingly, the re-edition of L’Étranger for its 70th anniversary can itself

be seen as a form of poetic metaphor, since it was published under Galli-

mard’s Futuropolis collection. While the actual Futuropolis doesn’t claim to

focus on any sort of science-fiction publications, and rather on illustrations,

the very name of the collection applies onto the work of Camus, and of the

others published alongside him, can elicit in the reader a sense of a kind of

avant-gardism that is still present today.

Finally, poetic metaphors compose multiple metaphors into one, drawing

from different source domains in order to extend, elaborate, or question the

original understanding of the target domain. Such a technique of superim-

position creates semantic depth by layering these different approaches.

It is particularly at this point that literary criticism and hermeneutics ap-

pear to be necessary to expose some of the threads pointed out by this

process. As an example, the metaphor of Charles Bovary’s cap, a drawn-

out metaphorin Flaubert’s work which ends up depicting something which

37”A certaines heures, la campagne est noire de soleil”, from Noces à Tipasa
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clearly isn’t a cap, operates by extending the literal understanding of how

a cap is constructed, elaborating on the different components of a hat in

such a rich and lush manner that it leads the reader to question whether

we are still talking about a hat. This metaphorical composition can be inter-

preted as standing for the orientalist stance which Flaubert takes vis-à-vis

his protagonists, or for the absurdity of material pursuit and ornament38, or

for the novel itself, whose structure itself is composed of complex layers,

under the guise of banal appearances. Composedmetaphors highlight how

they exist along degrees of meanings, from the conventional to the poetic,

and further to the non-sensical. This difference of degree, rather than of

kind, is one I ascribe to when it comes to delimiting corpus of the present

research in different ways of writing and reading code—writing code as

poetry, as tool, as a hack or as research aren’t absolutely siloed off from

each other.

Through these, Lakoff and Johnson highlight how metaphors function, and

how they can be identified. Another issue they address is that of the role

they fulfill in our everyday experiences as well as in our aesthetic experi-

ences. Granted a propensity to structure, to adapt, to reason and to in-

duce value judgment, metaphors are ultimately seen as a means to com-

prehend the world. By importing structure from the source, the metaphor

in turn creates structure in our lives, in our understandings (and thus have

power over us). Our understanding grasps these structures through their

features and attributes (one might even call them affordances, following

Gibson[14]), and integrates them as a given—in what Ricoeur would call a

dead metaphor. This is one of their key contribution, that metaphors have

a function which goes beyond an exclusive, disinterested, self-referential,

artistic role. If metaphors are ornament, it is far from being a crime, because

these are ornaments which, in combining imagination and truth, expand our

conceptions of the world by making things fit in new ways.

38Which ultimately leads Emma to her demise.

29



This approach of beauty as means to understand however predates Lakoff

and Johnson. Through his contribution to aesthetic philosophy, Monroe

Beardsley’s started touching upon metaphor from a semantic perspec-

tive. Published alongside his inquiries into the aesthetic character of an

experience, and taken later on by Ricoeur as a basis for his study, The

Metaphorical Twist implies that semantics and aesthetics might be con-

nected through the structuring operation of the metaphor—that which elic-

its an aesthetic experience can do so through the creation of unexpected,

or previously unattainable meaning. Ricoeur’s theory of the metaphor in-

deed builds on Beardsley’s conception that metaphor can have a designa-

tive role (the primary subject) which adds a ”local texture of irrelevance”, a

”foreign component”, whose semantic richness might over-reach and ob-

fuscate the intended meaning, as well as a connotative one (the secondary

subject), in which meaning is peripheral. For Ricoeur, it is indeed liter-

ary criticism, beyond logical grammar and linguistics, which hold the key

to understanding metaphors. Through an analysis of Beardsley’s work, he

highlights the metaphor-induced tension, between central and periphery,

between illuminating and obfuscating, between evidence and irrelevance.

As Beardsley inquiries into the features necessary for an aesthetic expe-

rience, of which the metaphor is part, he lists five criteria to distinguish

the character of such an experience. Besides object-directedness, felt-

freedom, detached-affect and wholeness, is the criteria of active discov-

ery, which is

”a sense of actively exercising the constructive powers of the

mind, of being challenged by a variety of potentially conflict-

ing stimuli to try and make them cohere; exhilaration in seeing

connections between percepts and meanings; a sense of intel-

ligibility”39

39The Aesthetic Experience, in The Aesthetic Point of View[15].
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As such, Beardsley highlights the possibility of an aesthetic experience to

make understandable, to unlock new knowledge in the beholder, and he

considers metaphors as a way to do so. The stages he lists go from (1) the

word exhibiting properties, to (2) those properties being made into mean-

ing, and finally into (3) a staple of the object, consolidating into (or dying

from becoming) a commonplace. This interplay of a metaphor being inte-

grated into our everyday mental structures, of poetry bringing forth into

the thinkable, and in metaphor creating a tension for such bringing-forth to

happen, makes the case for at least one of the consequences of an aes-

thetic experience, and therefore one of its functions: making sense of the

complex concepts of world.

3.2.2 Literature and cognitive structures

More recent work in aesthetics and literary research have continued in this

direction. Building on the focus on conceptual structures, the attention has

shifted to the relationship between literature (as part of aesthetic work and

eliciting aesthetic experiences) and cognition. This move starts from the

limitation of explaing ”art for art’s sake”, and inscribing it into the real, lived

experiences of everyday life mentioned above, perhaps best illustrated by

the question posed in Jean-Marie Schaeffer’s eponymous work—Why fic-

tion?. Indeed, if literary and aesthetic criticism are to be rooted in the ev-

eryday, and in the conventional conceptual metaphors which structure our

lives, our brains seem to be the lowest common denominator, and thus a

good starting point for a new contribution to understanding the arts. A

similar approach, related to scientific knowledge, can be seen in Michael

Polanyi’s work on tacit knowledge, in which that which the scientist knows

isn’t entirely and absolutely formal and abstracted, but rather embodied,

implicit, experiential. This limitation of codified, rigorous language when

it comes to communicating knowledge, opens up the door for an investi-

gation of how literature and art can help with this communication, while
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keeping in mind the essential role of the senses and lived experience in

knowledge acquisition (i.e. integration of new conceptual structures)[16].

Some of the cognitive benefits of art aren’t too dis-similar to those posed

by Beardsley, but shift their rationale from strict hermeneutics and criti-

cism to cognitive science. These benefits can be pleasure, emotion, or

understanding. Terrence Cave focuses on the latter when he says that lit-

erature ”allows us to think things that are difficult to think otherwise. We

now examine such a possibility from two perspectives: in terms of the role

of imagination, and in terms of the role of the senses.

Harris posits that literature is an object of knowledge, a creator of knowl-

edge, and that it does so through the interplay between rational thought

and imaginative thought, between the ”counterfactual imagination” and our

daily lives and experiences. Through this tension, this suspension of disbe-

lief is nonetheless accompanied by an epistemic awareness, making fiction

reliant on non-fiction, and vice-versa. Working on literary allusions, Ziva

Ben-Porat shows that this simultaneous activation of two texts is influenced

by several factors. First, the form of the linguistic token itself has a large

influence over the understanding of what it alludes to. Its aesthetic man-

ifestation, then, can be said to modulate the conceptual structures which

will be acquired by the reader. Second, the context in which the allud-

ing token(s) appears also influences the correct interpretation of such an

allusion, and thus the overall understanding of the text. This contextual

approach, once again hints at the change of scale that Ricoeur points in

his shift from the word to the sentence, and demands that we focus on the

whole, rather than single out isolated instances of linguistic beauty. Finally,

a third factor is the personal bagage (a personal encyclopedia) brought by

the reader. Such a bagage consists of varying experience levels, of quality

of the know-how that is to be activated during the reading process, and of

the cognitive schemas that readers carry with them. Imagination in literary

interpretation, builds on these various aspect, from the very concrete form
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and choice of the words used, to the unspoken knowledge structures held

in the reader’s mind, themselves depending on varied experience levels. By

allowing the reader to project themselves into potential scenarios, imagina-

tion allows us to test out possibilities and crystallize the most useful ones

to continue building our conception of the fictional world.

Thework of imagination also relies on how thewrittenword can elicit the re-

call of sensations. This takes place through the re-creation, the evokation

of sensory phenomena in linguistic terms, such as the perceptual mod-

eling40 of literary works, which she defines as (linguistic) simulations re-

lying on the senses to communicate situations, concepts, and potential

realities. Depiciting movement, vision, tactility and other embodied sen-

sations allows us to crystallize and verify the work of the imaginative pro-

cess. As such, literature unleashes our imaginary by recreating sensual

experiences—Lakoff even goes as far as saying that we can only imagine

abstract concepts if we can represent them in space41. It seems that the

imaginative process depends in part on visual and spatial projections, and

suggests the fitness of the conceptual structures depicted. By describing

situations which, while fictional, nonetheless are possible in a reality often

very similar to the one we live in, it is easy for the reader to connect and

understand the point being made by the author. So if literature is an object

of knowledge, both sensual and conceptual, offering an interplay between

rational and imaginative thought, it still relies on the depiction of mostly

familiar situations (the protagonists physiologies, the rules of gravity, the

fundamental social norms are rarely challenged). A first issue that we en-

counter here, in trying to connect source code and computing to this line of

40Elane Scarry’s expression
41Geoff Hinton, pioneer of modern deep-learning, has reportedly said that, to visualize

100-dimensional spaces, one should first visualize a 3-dimensional, and then ”shout 100 really

really loud, over and over again”, source: https://medium.com/artists-and-machine-

intelligence/a-journey-through-multiple-dimensions-and-transformations-

in-space-the-final-frontier-d8435d81ca51
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thought, is that code has close to no sensual existence, beyond its textual

form. In trying to communicate concepts, states and processes related to

code and computing, and in being unable to depict them by their own ma-

terial and sensual properties, we once again resort to linguistic abstraction

processes, including metaphor.

3.3 Metaphors in Software

3.3.1 User-facing metaphors

It is interesting to consider that the first metaphor in computing might be

concommitant with the first instance ofmodern computing—the Turingma-

chine. While Turing machines are widely understood as being manifested

into what we call computers (laptops, tablets, smartphones, etc.), and thus

definitely within the realm of machines, the Turing machine isn’t strictly a

machine per se. Rather, it is more accurately defined as a mathematical

model which in turn defines an abstract machine. Humans can be consid-

ered Turing machines (and, in fact, one of the implicit requirements of the

Turing machine is that, given enough time and resources, a human should

be able to compute anything that the Turing machine can compute), and

non-humans can also be considered Turing machines42. Debates in com-

puter science related to the nature of computing[17] have shown that com-

putation is far from being easily reduced to a simple mechnical concern,

and the complexity of the concept is perhaps why we ultimately revert to

metaphors in order to better grasp them.

Jumping ahead to the 1980s, these uses of metaphors became more

widespread and entered public discourse once personal computing be-

came available to ever larger audiences. With the release of the XEROX

42See research in biological computing, using DNA and protein to perform computational

tasks
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Star, features of the computer which were until then described as data pro-

cessing were given a new life in entering the public discourse. The Star was

seminal since it introduced technological innovations such as a bitmapped

display, a two-button mouse, a window-based display including icons and

folders. For instance, the desktop metaphor relies on previous understand-

ing of what a desktop is, and what it is used for in the context of physical

office-work; since early personal computers were marketed for business

applications (such as the Star), these metaphors built on the broad cogni-

tive structures of the user-base in order to help them make sense of this

new tool. Paul DuGay, in his cultural study of the Sony Walkman, makes a

similar statement when he describes the Sony Walkman, a never-before-

seen compound of technological innovations, in terms of pre-existing, and

well-established technologies[18]. The icon of a floppy disk for writing data

to disk, the sound of wrinkled paper for removing data from disk, the des-

ignation of a broad network of satellite, underground and undersea com-

munications as a cloud, these are all metaphors which help us make sense

of the broad possibilities brought forth by the computing revolution.

The work of metaphors takes on an additional dimension when we intro-

duce the concept of interfaces. As permeable membranes which enable

(inter)actions between the human and themachine, they are essential inso-

far as they allow for various kinds of agency, based on different degrees of

understanding. Departing from the physically passive posture of the reader

towards an active engagement with a dynamic system, interfaces highlight

even further the cognitive role of themetaphor. These depictions of things-

as-other-things influence themental model which we build of the computer

systemwe engage in. For instance, the prevalent windowsmetaphor of our

contemporary desktop and laptop environments obfuscates the very con-

crete action of the CPU (or CPUs, in the case of multi-core architecture) of

executing one thing at a time, except at speeds which cannot be intuitively

grasped by human perception. Alexander Galloway ’s work on interfaces as
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metaphorical representations suggests a similar concern when he bases it

on Jameson’s theory of cognitive mapping. While Jameson uses it in a po-

litical and historical context, the heuristic is nonetheless useful here: cog-

nitive mapping is the process by which the individual subject situates him-

self within a vaster, unrepresentable totality, a process that corresponds

to the workings of ideology. Substituting ideology with the computer43,

we can see how such a process helps make sense of the unthinkable, of

that which is too complex to grasp and therefore must be put into symbols

(words, icons, sounds, etc.).

Moving away from userland, in which most of these metaphors exist, we

now turn to examine the kinds of metaphors that are used by programmers

and computer scientists themselves. Since the sensual reality of the com-

puter is that it is a high-frequency vibration of electricity, one of the first

steps taken to productively engage with computers is that of abstraction.

The word computer itself can be considered as an abstraction: originally

used to designate the women manually inputting the algorithms in room-

scale mainframes, the distinction between the machine and its operator

was considered to be unnecessary. The relation between metaphor and

abstraction is a complex one, but we can say that metaphorical thought

requires abstraction, and that the process of abstraction ultimately implies

designating one thing by the name of another (a woman by a machine’s, or

a machine by a woman’s), being able to use it interchangeably, and there-

fore lowering the cognitive friction inherent to the process of specification,

freeing up mental resources to focus on the problem at hand.

This need to get away from the specificities of the machines has been

one of the essential drives in the development of programming languages.

Since we cannot easily and intuitively deal with binary notation to represent

43The relation between which has been explored by Galloway, Chun, Holmes and others,

and is particularly apparent in how an operating system is designated in French: système

d’exploitation.
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complex concepts, programming helps us deal with this hurdle by present-

ing things in terms of other things. Most fundamentally, we represent bi-

nary signs in terms of English language (e.g. from binary to Assembly). This

is, again, by no means a metaphorical process, but rather an encoding pro-

cess, in which tokens are being separated and parsed into specific values,

which are then processed by the CPU as binary signs. Still, this abstraction

layer offered by programming languages allowed us to focus on what we

want to do, rather than on how to do it. The metaphorical aspect comes

in when the issue of interpretation arises, as the possibility to deal with

more complex concepts required us to grasp them in a non-rigorous way,

one which would have a one-to-one mapping between concepts. Allen

Newell and Herbert A. Simon, in their 1975 Turing Award lecture, offer a

good example of symbolic (i.e. conceptual) manipulation relates inherently

to understanding and interpretation:

In none of [Turing and Church’s] systems is there, on the surface,

a concept of the symbol as something that designates.

The complement to what he calls the work of Turing and Church as au-

tomatic formal symbol manipulation is to be completed by this process of

interpretation, which they define simply as the ability of a system to des-

ignate an expression and to execute it. We encounter here one of the es-

sential qualities of programming languages: the ambivalence of the term

interpretation. A machine interpretation is clearly different from a human

interpretation: in fact, most people understand binary as the system com-

prised of two numbers, 0 and 1, when really it is intepreted by the com-

puter as a system of two distinct signs (red and blue, Alex and Max, hot

and cold, etc.). To assist in the process of human interpretation, I argue

that metaphors have played a part in helping programmers construct use-

ful mental representations related to computing. These metaphors can go

both ways: helping humans understand computing concepts, and to a cer-

tain extent, helping computers understand human concepts.
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3.3.2 Programmer-facing metaphors

Perhaps one of the first metaphors a programmer encounters when learn-

ing about the discipline is that which states that the function is like a kitchen

recipe. You specify a series of instructions which, given some input ingre-

dients (arguments), result in an output result (return value). The difficulty in

explaining, in that context, the need for a void keyword to individuals with

limited experience and knowledge of how programming works is a good

example of the non-straightforwardness of computing concepts. Similarly,

the use of the term server is conventionally associated and represented as

a machine sending back data when asked for it, when really it is nothing

but an executed script or process running on said machine. Incidentally, a

server is also a style of software architecture, to which we will return later.

Another instance of synbolic use relying on metaphorical interpretation can

be found in the word stream. Originally designating a flow of water within

its bed, it has been gradually accepted as designating a continuous flow of

contingent binary signs. Memory, in turn, stands for record, and is stripped

down of its essentially partial, subjective and fantasized aspects usually

highlighted in literary works (perhaps volatile memory gets closer to that

point). Finally, objects, which came to prominence with the rise of object-

oriented programming, have only little to do with the physical properties of

objects, with no affordance for being traded, for acting as social symbols,

for gaining intrinsic value, but rather the word is used as such for highlight-

ing its boundedness, and ability to be manipulated without interfering with

other objects.

Most of these designations, stating a thing in terms of another aren’t

metaphors in the full-blown, poetic sense, but they do hint at the need

to represent complex concepts into humanly-graspable terms, what Paul

Fishwick calls text-based aesthetics[19]. The need for these is only se-

mantic insofar as it allows for an intended interaction with the computer to
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be carried out successfully—e.g. one has an intuitive understanding that

interrupting a stream is an action which might result in incompleteness of

the whole. This process of linguistic abstraction doesn’t actually require

clear definitions for the concepts involved. The example of the terminol-

ogy in modern so-called cloud computing uses a variety of terms stacked

up to each other in what might seem to have no clear denotative meaning

(e.g. Google Cloud Platform offers Virtual machine compute instances), but

nonetheless have a clear operative meaning (e.g. the thing on which my

code runs). This further qualifies the complexity of the sense-making pro-

cess in dealing with computers: we don’t actually need to truly understand

what is precisely meant by a particular word, as long as we use it in a way

which results in the expected outcome44.

The reverse process also brings forth issues of conceptual representation

through formal symbolic means. The work of early artifical intelligence re-

searchers consists not just in making machines perform intelligent tasks,

but also implies that intelligence itself should be clearly and inambiguously

represented. The work of Terry Winograd, for instance, was concerned

with language processing (intepretation and generation)[20]. Through his

inquiry, he touches on the different ways to represent the concept of lan-

guage in machine-operational terms, and highlights two possible represe-

nations which would allow a computer to interact meaningfully with lan-

guage. He considers a procedural representation of language, one which

is based on algorithms and rules to follow in order generate an accurate

linguistic model, and a declarative representation of language, which re-

lies on data structures which are then populated in order to create valid

sentences. At the beginning of his exposé, he introduces the historically

successivemetaphors whichwe have used to build an accuratemental rep-

resentation of language (language as law, language as biology, language

as chemistry, language as mathematics). As such, we also try to present

44See the famous comment in the UNIX source: You are not expected to understand this.
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language in other terms than itself in order to make it actionable within a

computing environment.

As we’ve seen, metaphors are implicitly known not to be true in their most

literal sense. Max Black in Models and Metaphors argues that metaphors

are too loose to be useful in analytic philosophy, and therefore too loose for

programming languages, heavily based on the analytic tradition. Yet, they

still rely heavily on models in order to make human concepts graspable

and operation to the computer. These tools deployed during the repre-

sentational process differ from conventional or poetic metaphors insofar

as they can be logically operated upon and therefore empirically verifiable

or falsifiable. These models are means through which we aim at taking the

conceptual structures on which metaphors also operate, and explicit them

in formal symbol systems45.

Abstraction, metaphors and synmbolic representations are thus useful

tools when it comes to computing, in terms of trying to represent to our-

selves what it is that a computer can and effectively does, and in terms of

explaining to the computer what it is we’re trying to operate on (from an in-

teger, to a non-ASCII word, to a renewable phone subscription or to human

language).

3.4 Programming and psychology

So metaphors work in software because they do not exist just within liter-

ature, and yet remain too vague for a strict computer interpretation. Such

a computer interpretation, in turn, is too complex and fine-grained for most

individuals interactingwith them (from end-users tomost programmers and

computer scientists) to be useful. The conclusion we establish here, is

45For a further inquiry of models and theories, see Weizenbaum in Computer Power and

Human Reason
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about how connections betweenmental models relate to the process of un-

derstanding, at the overlap between human understanding and computer

understanding, and how aesthetic experience can affect this encounter.

The mental model offers a good starting point for exploring this overlap. A

mental model, as a kind of internal symbolic representation of external re-

ality, is a more rigorous and formal conceptual structure than a metaphor—

which only offers a broad direction through evokative power, rather than

an actionable basis. They are related to knowledge, since the construction

of accurate and useful mental models through the process of understand-

ing underpins knowledge acquisition. However, mental models need not

be correlated with empirical truth, but extensive enough to be described

by logical means. Mental models can be informed, constructed or further

qualified by the use of metaphors, but they are nonetheless more precise

than the cognitive structures on which metaphors rely—a mental model

can be seen as a more specific instance of a conceptual structure. The

term schema, used in cognition-influenced literary studies, again following

Lakoff, is here a point of entry into the psychology of computer program-

ming.

Francoise Détienne, in her study of how computer programmers design and

understand programs[1], defines the activity of designing programs in ac-

tivating schemas, mental representations that are abstract enough to en-

compass a wide use (web servers all share a common schema in terms of

dealing with requests and responses), but nonetheless specific enough to

be useful (requests and responses are qualitatively different subsets of the

broader concept of inputs and outputs). This flexibility is useful when one

needs to deal with two aspects of working within a programming environ-

ment. An added complexity to the task of programming comes with the

dual nature of the mental models needing to be activated: the computer’s

actions and responses are comprised of the prescriptive (what the com-

puter should do) to the effective (what the computer actually does), one
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of the tensions at the heart of computer programming. In order to be ap-

propriately dealt with, then, programmers must activate and refine mental

models of a program which resolves this tension.

In programming, within a given context—which include goals and

heuristics—, elements are being perceived, processed through existing

knowledge schemas in order to extract meaning. Starting from Kintsch and

Van Dijk’s approach of understanding text[21], she nonetheless highlights

some differences. In program texts, there is an entanglement of the plan,

of the arc, of the tension, which does not happen so often in most of the

traditional narrative text. A programmer can jump between lines and files

in a non-linear, explorative manner. Program texts are also dynamic, pro-

cedural texts, which exhibit complex causal relations between states and

events, which need to be kept track of in order to resolve the presctiptive/-

effective discrepancies. Finally, the understanding of program text is first a

general one, which only subsequently applies to a particular situation (a fix

or an extension needing to be written), while narrative texts tend to focus

on specific instances of protagonists, scenes and descriptions.

A similarity in understanding program texts and narrative texts is that the

sources of information for understanding either are: the text itself, the in-

dividual experience and the broader environment in which the text is lo-

cated (e.g. technical, social). Building on Chomsky’s concepts, the activity

of understanding in programming can be seen as understanding the deep

structure of a text throuh its surface structure[22]. One of the heuristics

deployed to achieve such a goal is looking out for what she calls beacons,

as thematic organizers which structure the reading and understanding pro-

cess. However, one of the questions that isn’t answered specifically, and

which is the aim of this thesis, is to highlight how does the specific surface

structure in programming result in the understanding of the deep structure.

Additional recent research in the cognitive responses to programming

tasks, conducted by Ivanova et. al., do not appear to settle the ques-
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tion of whether programming is rather dependent on language process-

ing brain functions, or on functions related to mathematics (which do not

rely on the language part of the brain)[23]. They conclude that, while lan-

guage processing might not be one of the essential ways that we process

code, it also does not rely on exclusively mathematical functions. Stimu-

lating in particular the multi-demand system, it seems that programming

is a polymorphous activity involving multiple exchanges between different

brain functions. What this implies, though, is that neither literature nor lin-

guistics should be the only lens through which we look at code.

Going back to research in contemporary literary studies can start laying

out threads of an answer. Jérôme Pelletier uses Carl Plantinga to define

emotional responses in the face of aesthetic objects as dual: either one

has an emotional response to the artefact itself (surface), of an emotional

response to what it represents (deep). In the context of reading fiction, the

reader is helped in their understanding by looking out for guides or props46,

which are similar to the beacons emphasized by Détienne. A notable differ-

ence is that the guides are suggested, implied, left as traces for the reader

to subtly construct (as in the case of the cap metaphor inMadame Bovary),

rather than explicitly stated throughout the program text (usually most ob-

viously in the form of comments). However, we’ve seen previously that the

use of comments is, by most programmers, not considered to be an aes-

thetic feature of an inspected source code, hinting at the fact that (useful)

subtlety, might be a desired attribute of beautiful code.

Programming is then fiction, in that the pinpointing of its source of exis-

tence is difficult, and in that it affords the experience of imagining contents

of which one is not the source, and of which the certainty of isn’t defined.

Furthermore, both programming and fiction suggest surface-level guiding

points helping the process of constructing mental models and conceptual

representations. It is also non-fiction, in that it deals with concrete issues

46Currie, 1990
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and problems (more often than not, a pestering bug), and that it provides

a pragmatic frame for processing representations, in which assumptions

stemming from burgeoning mental models can be easily verified or falsi-

fied. It might then be appropriate to treat it as such, simultaneously fiction

and non-fiction. Finally, it is also an artistic activity which, in Goodman’s

terms, might be seen as an analysis of [artistic] behavior as a sequence of

problem-solving and planning activities.”[24].

To conclude this section, then, we turn to Jerome Bruner, who considers

that art allows us to ”reading in others’ minds”, to anticipate what a writer

has been intending for us to understand through their text, eithe program

or narrative. This intent component relates to the interpretation issue men-

tioned above: the interpretation of the machine is different from the inter-

pretation of the human, and therefore what also needs to be intepreted is

the intent of the author. Reading is then akin to constructing a cognitive

cartography, allowing for an experience to be made intelligible, sensible.

The repeated implication of spatial and visual components of metaphors

and mental models allows us to consider metaphors as an architecture of

thought[25]. The next section is therefore dedicated to examining more

closely the parallels between software architecture and physical architec-

ture, and how the aesthetic standards of the latter could apply to the aes-

thetic standards of the former.
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4 Architecture and software quality

Beyond its physical manifestation, the term architecture has also been ap-

plied to software development. While software does not deal with anything

of concrete, immediate existence beyond lines of code (in contrast with

hardware), it nonetheless holds similarities with physical architecture inso-

far as it is about the design, planning and construction of complex struc-

tures for human use, and possibly enjoyment. This section takes a closer

look at this relationship, and particularly to the place of patterns. Patterns,

as we will see, can elicit goodness in a construction and, through the con-

crete manifestation of habitability, itself of form of beauty.

4.1 General software architecture

Software architecture emerged as a consequence of the structured

revolution[26], which was concerned more with the higher-level organi-

zation of code in order to ensure the quality of the software produced.

Such an assurance was suggested by Djikstra in two ways: by ensuring the

provability of programs in a rigorously mathematic approach, and by ensur-

ing that programs remained as readable as possible for the programmers.

Structure has therefore been an essential component of the intelligibility

of the software since the 1970s. It’s only in the late 1990s that software

architecture as a discipline has been recognized as such, stemming form a

bottom-up approach of recognizing that some ways in which code is orga-

nized is better than others.

4.1.1 Top-down software architecture

Today,

software architectural models are intended to describe the
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structure and behavior of a system in terms of computational

entities, their interactions and its composition patterns, so to

reason about systems at more abstract level, disregarding im-

plementation details.[27]

At its most common denominator, architecture is concerned with the gross

structure of a system. At its best, architecture can support the understand-

ing of a system by addressing the same problem as cognitive mapping

does: simplifying our ability to grasp large system. Jameson indeed bor-

rows the phrase from Kevin Lynch, whose work on The Image of the City

highlighted that our understanding of an urban environment relies on com-

binations of patterns (node, edge, area, limit, landmark) to which personal,

imagined identities are ascribed. The process is once again that of ab-

straction, but goes beyond that. Garland notes that, in its most effective

cases, software architecture can expose the high-level constraints on the

design of a system, as well as the rationale for making specific architec-

tural choices. Again, the intent of the architect (or the programmer) matters

along with a purely descriptive depiction of the system. Intent (along with

reuse, construction, evolution, analysis andmanagement) is one of the cru-

cial aspects of the computational paradigm on which the software is built.

As an example, the Linux Kernel’s architecture can be considered, amongst

others reasons, one of the reasons why the project became so popular

once integrated into the GNU ecosystem. Along with its distribution li-

cense, two of its defining features are speed and portability. While speed

can be attributed to its use of C code, also responsible to some extent

for its portability, the architecture of the kernel is separated in multiple

components which make its extension relatively simple. On one side is the

monolithic architecture of the kernel, in which process and memory man-

agement, virtual file systems, input/output schedulers, device drivers and

network interfaces are all lumped together in kernel space. However, this

architecture also allows ofr dynamically loadable kernel modules, pieces of
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the operating system which can be added and removed to the operating

system without interference with the core features. This provides a quality

of extendability which further contributes to the success of the ecosystem

of the Linux ecosystem (see the numerous Linux-based distributions, from

Ubuntu to Red Hat and Android).

An architecture, such as that of the Linux kernel, thus provides significant

semantic content about the kinds of properties that developers should be

concerned about and the expected paths of evolution of the overall system,

as well as its subparts. Other architectures include, for instance, the client-

server architecture (with the peer-to-peer architecture as an alternative),

the model-view-controller architecture (and its presentation-abstraction-

control counterpart), and one can even find their source in chip design,

with Friedrich Kittler famously claiming that the last people who ever truly

wrote anything where the Intel engineers laying out the plan of the 8086

chip (whichwould engender thewhole family of x86-based devices)[28]. In

this case, this instance is one of the fewwhich relates software architecture

to its physical counterpart, albeit in a very technical sense of plans and

diagrams.

In the literature consulted for this research, there are only few explicit refer-

ences to beauty in software architecture design. instead, desirable proper-

ties are those of performance, security, availability, functionality, usability,

modifiability, portability, reusability, integrability and testability. Perhaps

this is due to the fact that the understanding of beauty in terms of exter-

nal manifestation—decoration—isn’t here the main point of the endeavour.

Following Adolf Loos, and inspecting software architecture diagram and

specifications, it seems that in this specific case, ornament seems to be

a crime: highlighting the rise of the useful object in modern civilization47,

he argues that there should be no decoration needed to contribute to the

functionality of the object, for fear that it must go out of style.

47Along with its white-supremacist undertones rampant in Europe at the time
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Style is nonetheless present in software architecture. In this context, an ar-

chitectural style typically specifies a design vocabulary, constraints on how

that vocabulary is used, and semantic assumptions about that vocabulary.

For example, a pipe-and-filter style might specify a vocabulary in which the

processing components are data transformers (filters), and the interactions

are via order-preserving streams (pipes). When it comes down to program-

ming such an architectural style, pipes and filters do have a very real ex-

istence in the lines of source code. These concepts are inscribed as the |

character for pipes, or the .filter() method on the JavaScript array type,

which itself has different ways of being written (e.g. with an anonymous

callback function, or an externally defined function). By virtue of there be-

ing different ways being written, one can always argue for whether or not

one is better than the other, ultimately resulting in better, clearer—and per-

haps therefore beautiful—source code.

More specifically, the aesthetic manifestations in the form of source code

enter in a dialogue with software architecture. If a good system architec-

ture should first and foremost exhbit conceptual integrity[29], one can ex-

tend this integrity to its source code manifestation. A message-passing

architecture with a series of global variables at the top of each file, or an

HTTP server which also subscribes to event channels, would look ugly to

most, since they betray their original concept. These concrete manifesta-

tions of a local texture of incoherence, to paraphrase Beardsley, might be

more akin to a code smell, a hint that something in the program might be

deeply wrong.

Different kinds of architecture all deal with structures, and these struc-

ture can only fit together in a satisfactory way if their componnents re-

late to each other in a satisfactory way. One could also make the par-

allel between musical orchestration, and computing orchestration as the

automated configuration, coordination, deployment and maintenance of

(mostly distributed) computer systems and software. If an orchestra has
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an architecture, it nonetheless also features virtuosos and aesthetically-

pleasing phrases (dealing, once again, with tension and its resolution); if a

novel has an architecture, it also has specific aesthetic manifestations in its

sentences; if computer systems have an architecture, they could possibly

have a beautiful manifestation in its individual components which, perhaps

not originating from its architecture, nonetheless relate closely to it.

4.1.2 Craftsmanship as bottom-up software construction

Speaking of individual components, we can recall that before the archi-

tect came the craftsman. Architecture as a field and the architect as a

role have been solidified during the Renaissance, consecrating a separa-

tion of abstract design and concrete work, in which the craftsman is rel-

egated to the role of executioner, until the arrival of civil engineering and

blueprints overwhelmingly formalized the discipline. The classical archi-

tect, here, serves as the counterpart to the computer scientist, except

in an inverse relation: the architect emerged from centuries of hands-on

work, while the computer scientist (formerly known as mathematician) was

first to a whole field of practicioners as programmers, followed by a need

to regulate and structure those practices. Different sequences of events,

perhaps, but nonetheless mirroring each other. On one side, construction

work without an explicit architect, under the supervision of bishops and

clerks, did indeed result in significant results (e.g. Notre Dame de Paris,

Basilica of Sienna). On the other side, letting go of structured and re-

stricted modes of working characterizing computer programming up to the

1980s resulted in a comparison described in the aptly-named The Cathe-

dral and the Bazaar. This essay described the Linux project, the open-

source philosophy it propelled into the limelight, and how the quantity of

self-motivated workers without rigid working structures (which is not to say

without clear designs) can result in better work than if made by a few, se-

lect, highly-skilled individuals[30].
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What we see, then, is a similar result: individuals can cooperate on a long-

term basis out of intrinsic motivation, and without clear, individual owner-

ship of the result; a parallel seen in the similar concepts of collective crafts-

manship in the Middle-Ages and the egoless programming of today[31],

both putting pride in the quality and beauty of their work.

The relation of craftsmanship to architecture is as important as the rela-

tionship of craftsmanship to programming. A traditional perspective on the

matter is that of the motor skills, with dexterity, care and experience as es-

sential features of a craftsman’s ability to realize something beautiful[32],

along with self-assigned standards of quality[33]. These qualitative stan-

dards which, when pushed to their extreme, result in a craftsperson’s style,

are to be gained through practice and experience, rather than by ex-

plicit measurements[34] 48. Two things are concerned here: tools and

materials[34]. A craftsperson should have a deep, implicit knowledge of

both, what they use to manipulate (chisels, hammers, ovens, etc.) as well

as what they manipulate (stone, wood, steel, etc).

This relationship to tools and materials is expected to have a relationship

to the hand, and at first seems to exclude the keyboard-based practice of

programming. But even within a world in which automated machines have

replaced hand-held tools, Osborne writes:

In modern machine production judgement, experience, ingenu-

ity, dexterity, artistry, skill are all concentrated in the program-

ming before actual production starts.[32]

He opens here up a solution to the paradox of the hand-made and the

computer-automated, as programming emerges from the latter as a new

skill. If machines, more and more driven by computing systems, have re-

placed traditional craftsmanship’s skills and dexterity, this replacement can
48See Pye’s account of craftsmanship, and his intent to make explicit the question of qual-

ity craftsmanship and ”answer factually rather than with a series of emotive noises such as

protagonists of craftsmanship have too often made instead of answering it.”
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nonetheless suggest programming as a distinctly 21st-century craftsman-

ship, as well as other forms of cratsmanship-based work in an information

economy. Beautiful code, code well-written, is indeed an integral part of

software craftsmanship[35]. More than just function for itself, code among

programmers can, and should be held to beauty standards[36]. Such stan-

dards are another relationship with traditional craftsmanship—in this case,

form is indeed mostly following function.

A craftsman’s material consciousness is recognized by the anthropomor-

phic qualities ascribed by the craftsman to the material. In the case of

code, adjectives such as ”clean”, ”elegant”, ”smelly” occur over and over in

online discussions of programmers. Clean code, elegant code, are indica-

tors not just of the awareness of code as a raw material that should be

worked on, but also of the necessities for code to exist in a social world. As

software craftsmen assemble in loose hierarchies to construct software,

the aesthetic standard is the respect of others[37].

Another unique feature of software craftsmanship is its blending between

tools and material: code, indeed, is both. This is, for instance, represented

at its extreme by languages like LISP, in which functions and data are

treated in the same way[38]. In that sense, code is a material which can be

almost seamlessly converted from information to information-processing,

and vice-versa. Disregarding for now the very real impact of computing on

the environment, code as a material is perhaps the only non-finite material

that craftspeople can work with—along with words.

Code, then, is not just an overarching, theoretical concept which can only

be reckoned with in the abstract, but also the very material foundation

from which the reality of software craftsmanship evolves. An analysis of

computing phenomena, from software studies to platform studies, should

therefore take into account the close relationship to their material that soft-

ware developers can have. As Fred Brooks put it,
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The programmer, like the poet, works only slightly removed from

pure thought-stuff. He builds his castles in the air, from air, cre-

ating by exertion of the imagination. Few media of creation are

so flexible, so easy to polish and rework, so readily capable of

realizing grand conceptual structures.[31]

This bottom-up approach to programming, of the craftsman carefully writ-

ing and assembling their code into a satsfying artefact, can be examplified

in the emergence of patterns in software design. Before we examine these

more closely, we first turn to a the particular aspect of architectural theory

which influenced it, that of Christopher Alexander’s.

4.2 Beauty in architecture

4.2.1 A functionalist approach

If it is still unclear whether or not beauty is part of software architecture,

beauty is definitely one of the essential components, and aims, of the archi-

tect, dating back to Vitruvius’s maxim that a building should exhibit firmitas,

utilitas, venustas (solidity, usefulness, beauty). While structure is meant to,

by definition, stand the test of time49, utility can be assessed by the ex-

tent to which a building fulfills its intended function, and beauty remains

elusive, more often igniting debates amongst architects, rather than creat-

ing consensus over particuarly beautiful constructions50. Different schools

of beauty in architecture exist, which would could very roughly separate

between top-down or bottom-up approaches.

In terms of top-down approaches, we’ve seen that, since beautiful soft-

ware is, first and foremost, software which runs as intended, perhaps the
49See the still standing structures of Roman and Greek antiquities, based on a particular

mixture of cement.
50With the exception, perhaps of Frank Lloyd Wright’s Fallingwater, and Ludwig Mies van

der Rohe’s Neue Nationalgallerie.
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first architectural standard which we can apply here is that of Louis Sul-

livan’s form follows function. Due to its physical manifestation, Sullivan’s

statement is therefore inevitably translated into concrete, visible, and sen-

sual consequences.

All things in nature have a shape, that is to say, a form, an out-

ward semblance, that tells us what they are, that distinguishes

them from ourselves and from each other.

[...]

It is the pervading law of all things organic and inorganic, of all

things physical and metaphysical, of all things human and all

things superhuman, of all true manifestations of the head, of the

heart, of the soul, that the life is recognizable in its expression,

that form ever follows function. This is the law.[39]

We must however keep in mind that Sullivan, within the Chicago School of

Architecture, was one of the pioneers of the modern skyscraper, and there-

fore focused on a very particular kind of architecture, in which productiv-

ity became the only, explicit function and the context for his statement.

Jacques Rancière, in his study of the Werkbund and the Bauhaus-inspired

architecture, offers an alternative approach, away from the strcit function-

ality laid out by Sullivan and by Loos before him. The simplification of forms

and processes, he writes of the AEG Turbinenhalle in Berlin, which is nor-

mally associated with the reign of the machine, finds itself, on the contrary,

related to art, the only y thing able to spiritualize industrial work and com-

mon life[40].

Rancière offers us an additional perspective, departing form the strict func-

tion of an object or of a building, to its use. Such a shift moves from a

structure-centric perspective (such as Le Corbusier’s ideal dimensions),

to a human-centric perspective (such as Lacaton & Vassal’s practical ex-

tension of space and light). Peter Downton reiterates this point, when he
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states that ”buildings and design are often judged from artistic perspec-

tives that bear no relation to how the building’s occupants perceive or oc-

cupy the building.”[41]. The bottom-up approach is therefore one which

might relate less to software architecture as a top-down, abstraction pro-

cess, and more to an immediate, usable one of the craftsman as a creator

who is highly conscious of the user. The work of Lynch, which we’ve men-

tioned above, stands in the tradition of various urban planners and archi-

tects such as Jane Jacobs and William H. Whythe. Whythe’s work, for in-

stance, focused on empirical observation in order to determine what makes

a good space, deducing its aesthetic properties (such as flowing water,

movable chairs, the presence of street food vendors, multiple-layered sit-

tings, etc.).

4.2.2 A spiritual approach

Christopher Alexander also belongs to this empirical tradition of examining

what makes a space good or not, by exmaining its uses and the feelings it

elicits in the people who tread its grounds. First developing his theory when

working on the design of the Bay Area Rapid Transit System, he elaborated

an approach of architecture which does not exclusively rely on abstract

design, but rather takes into account the multiple layers and factors that

go into making

[...] beautiful places, places where you feel yourself, places

where you feel alive[42] [...]

In this work, he focuses on how beauty is involved in moving from disorga-

nized complexity to organized complexity, an organizing process which is

not, in itself, the essence of beauty, but rather the condition for such beauty

to arise. Alexander’s conception of beauty, while very present through-

out his work, is however not immediately concerned with the specifics of

aesthetics, understood as the sensual, formal properties of an object, but
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rather with the existence of such objects.

In this process of achieving organized complexity, he highlights the para-

doxical interplay between symmetry and asymmetry, and pinpoints beauty

as the ”deep interlock and ambiguity” of the two, a beauty he also finds the

the relationship between static structures of the built environment, and the

flow of living individuals in their midst. Architecture as a whole does clearly

take into account the role of tension, of which it is yet another manifesta-

tion, akin to those we’ve seen in, amongst others, Ricoeur’s analysis of the

metaphor, and the resolution of the riddles presented in works of obfus-

cated source code.

His approach to this quality is successively named as appropriateness,

rightness to fit, not-simplicity and wholeness. All of these have in com-

mon the subsequent need for a purpose, a purpose which he calls the

Quality Without a Name. This quality, he says, is complicated to name,

but nonetheless exists: it is, ultimately, the quality which sustains life, a

conclusion which he reached after extensive empirical research: no one

can name it precisely, but everyone knows what it refers to. It is the qual-

ity which makes one feel at home, which makes one feel like things make

sense in a deep, unexplicable way.

Among the adjectives he uses to circle around this quality are whole, com-

fortable, free, exact, egoless, eternal. Since his work applies more broadly

to any design-connected discipline, it also applies to software develop-

ment. Using the word program as an umbrella for code block, we can briefly

sketch out how such properties could apply to software.

A whole program is a program which isn’t missing any features, whose en-

counter (or lack thereof) might cause a crash.

I see two interpretations to a program being comfortable. First, it is a pro-

gram which does not work against its material, a piece of code which is not

trying to ”re-invent the wheel”, when the wheel might already be built-in, or
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which does indeed re-invent it, if the existing wheels aren’t satisfying. Sec-

ond, a comfortable program is one which might be modified without fear

of some unintended side-effects, without inivisible dependencies which

might then compromise the whole.

Free programs are programs which, anthropomorphizing set aside for an

instant, lead their own lives, while being mindful of the lives of others in the

shared environment (the design philosophy of the UNIX operating system

of ”doing one thing well”, with its consequence of being able to compose

these programs into elaborate chains of data processing, can be a good

example of such freedom).

Exact programs are, then, programs which do not exhibit any verbosity, in

which every line is necessary and required, without being so obscure that

it hinders comfort.

A program that is too exact might be exhibiting too much of its writer’s ego,

too specific and requiring a unique kind of background knowledge which

other readers might not have51.

Finally, an eternal program relates to the timelessness mentioned in the ti-

tle of its work—it touches upon the idea of the sublime, a deep, ambivalent

feeling of something that stands beyond past, present and future. Pro-

gramming might be too young of a discipline to be able to single out a

precise example, but the Lisp interpreter might be a good candidate, since

it is a concise, succint way of writing an interpreter of Lisp in Lisp, embody-

ing the essence of programming language research and some of the main

principles of computation (recursion, symbols, interchangeability between

data and procedures).

Alexander did conduct empirical research to find examples of such quali-

ties, in a study led at the University of Berkley which resulted in his most

popular book, A Pattern Language[43]. In it, he lists out 253 patternswhich,

51See egoless programming, mentionned above.
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he claims, form a language, akin to a Chomskian generative grammar, re-

usable and extendable in a very concrete way. This study has had a sig-

nificant impact on the computer science community, to which we turn to

next.

4.3 Patterns in software

4.3.1 Design patterns

A Pattern Language kickstarted a whole field of research based around this

idea of distinct, self-contained but nevertheless composable components.

In Alexandrian terms, they are a triad, which expresses a relation between

a certain context, a problem, and a solution.. Similarly to architectural pat-

terns, these emerged in a bottom-up fashion: individual software devel-

opers found that particular ways of writing and organizing code were in

fact extensible and reusable solutions to common problems which could

be formalized and shared with others.

Besides the theoretical similarities between software and architecture

mentioned above, it is the lack of learning from practical successes and fail-

ures in the field which prompted interest in Alexander’s work, along with the

development of Object-Oriented Programming, first through the Smalltalk

language, then with C++, 52. The similarity between a pattern and an ob-

ject, and their promise of using them which would lead to better results on

multiple dimensions, made it very attractive to software developers. Writing

in Patterns of Software (with a foreword by Alexander), Richard P. Gabriel

illustrates that point:

The promise of object-oriented programming—and of program-

ming languages themselves—has yet to be fulfilled. That

promise is to make plain to computers and to other program-

52today most of the programming languages allow for some object-oriented paradigm

57



mers the communication of the computational intentions of a

programmer or a team of programmers, throughout the long and

change-plagued life of the program. The failure of programming

languages to do this is the result of a variety of failures of some

of us as researchers and the rest of us as practitioners to take

seriously the needs of people in programming rather than the

needs of the computer and the compiler writer.[44]

The real issue raised here in programming seems to be, again, not to speak

to the machine, but to speak to other humans. This complexity of commu-

nication, had always asked to be solved, perhaps at this point in the form

of object-orientation. Understanding software is hard. Creating, identi-

fying, and formalizing patterns into re-usable solutions turns out to be at

least as hard[45]. Part of this comes from a lack of visibility of code bases

(most of them being closed source), but also from the series of various

economic and time-sensitive constraints to which developers are subject

to (and echoes those in the field of architecture), and which result in mov-

ing from making something great to making something good enough to

ship. The promise of software patterns seemed to offer a way out by—

laboriously—codifying know-how.

4.3.2 Compression and habitability through patterns

Throughout his work, Gabriel weaves parallels between his experience as

a software developer and as a poetry writer, drawing concepts from the

latter field into the former, and inspecting it through the lens of pattern

languages. Two concepts in particular are worth examining a bit further:

compression and habitability.

Compression, in narrative and poetic text, is the process through which a

word is given additional meaning through the rest of the sentence. In a
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sentence such as ”Last night I dreamt I went to Manderley again.”53, the

reader is unlikely to be familiar with the exact meaning ofManderley, since

this is the first sentence of the novel. However, we can infer some of the

properties of Manderley from the rest of the sentence: it is most likely a

place, and it most likely had something to do with the narrator’s past, since

it is being returned to. A similar phenomenon happens in source code, in

which the meaning of a particular expression or statement can be derived

from itself, or from a larger context. In object-oriented programming, the

process of inheritance across classes allows for the meaning of a particu-

lar subclass to be mostly defined in terms of the fields and methods if its

subclasses—its meaning is compressed by relying on a semantic environ-

ment, whichmight or not be immediately visible. This, Gabriel says, induces

a tension between extendability (to create a new subclass, one must only

extend the parent, and only add the differentiating aspects) and context-

awareness (one has to keep in mind the whole chain of properties in order

to know exactly what the definition of an interface that is being extended

really is). Resolving such a tension, by including enough information to hint

at the context, while not over-reaching into verbosity, is a thin line of being

self-explanatory without being verbose.

This recalls the idea of semantic proximity, extracted from our analysis

of programmers’ comments and opinions on what they found makes code

beautiful. Such a pattern does however contrast with the nature of object-

oriented programming, in which inheritance (and subsequent local abstrac-

tion of subclasses) is considered best practice. Gabriel calls this idea lo-

cality: it is

that characteristic of source code that enables a programmer

to understand that source by looking at only a small portion of

it.[44]54

53From Daphne DuMaurier, Rebecca.
54He adds that this isn’t so much an issue if one is using a powerful and efficient IDE—a
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Finally, Gabriel, writing in 1998, mentions that compression isn’t so much

a problem in poetry since, ultimately, the definitions of each words aren’t

quite limited to the poet’s own mind but, as we’ve seen, also existing in

the broad conceptual structures which readers hold. However, since all

aspects of a program is always by definition explicitly defined, program-

mers thus have the ultimate say on the definition of most of the data and

functions described in code. Compression doesn’t work as well because

the reader cannot assume anything that is being mentioned in the code

(and defined elsewhere), without risking the (error-raising) consequence

of being wrong.

His particular assumption that others will want to modify and extend source

code is one that is influenced by his background as a commercial developer.

Other pieces of code might just be satisfying in being read or deciphered

(as we’ve seen in source code poetry) but this assumption of interaction

with the code brings in another concept, that of habitability. In his terms,

it is

the characteristic of source code that enables programmers,

coders, bug-fixers, and people coming to the code later in its

life to understand its construction and intentions and to change

it comfortably and confidently.[44]

In a sense, then, beautiful code is also code that is clear enough to inform

action and, well-organized enough to warrant actually taking that action55.

It relates to Alexander’s property of comfort, by affording involvement in-

stead of estrangement. A specific instance of habitability, in software pat-

terns, might be difficult to pinpoint, but can pop up in some cases: a beauti-

ful commit is a commit which adds a significant feature, and yet only change

remark which opens up the question of the role of tools and technical mediators in the reading

and writing process...
55Recall the developer who mentioned that beautiful code he saw was code which clearly

separated hardware dependent sections from hardware independent sections.
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the lines of the code that are within well-defined boundaries (e.g. a single

function), leaving the rest of the codebase untouched, and yet affecting it

in a fundamental way.

Still, such a feature of habitability, of supporting life, doesn’t specify at all

what it could, or should, look like. Rather, we get from Alexander a negative

definition:

The details of a building cannot be made alive when they are

made frommodular parts.... And for the same reason, the details

of a building cannot be made alive when they are drawn at a

drawing board.[42]

If modularity itself is at odds with making good (software) constructions,

then its implementation under the terms of an object-oriented programming

paradigm becomes complicated.

Indeed, the technical formalization of the field came with the release of

theDesign Patterns: Elements of Reusable Object-Oriented Software book,

which lists 23 design patterns implementable in software[46]. Its influence

(in terms of copies sold, and in terms of papers, conferences and working

groups created in its wake) is undeniable, with Alexander himself giving a

keynote address at the ACM two years after the release. It has, however,

been met with some criticism.

Some of this criticism is that patterns are ”external”, they look like they come

from somewhere else, and are not adapted to the code. In this sense,

they join Alexander in being wary of constructions which do not integrate

fully within their environments, which do not, in an organic sense, allow

for a piecemeal growth56. If patterns express relations between contexts,

problems and solutions, then it seems that one of the main complaints of

developers looking at their code and seeing chunks of foreign code dumped

56Addressing this concern, the failure of strict top-down hierarchies in software develop-

ment resulted in the agile methodology for business teams
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in the middle to fix some generic problem57, is the lack of understanding

of context offered by those proposed solutions. In this, blindly applying

patterns from a textbook might be a solution, but it’s not an elegant one.

The other criticism is that software patterns are often workarounds for fea-

tures that a particular programming language doesn’t allow from the get-

go, or offer more convoluted implementations when written in Smalltalk

and C++ than, for instance, Lisp58. One aspect that has been eluded so

far, and perhaps the most inescapable context of all, is the programming

language used. One doesn’t write Ruby like one writes Java(tm), or C++,

and certainly not Lisp.

To conclude this section, we’ve seen that architecture can offer us some

heuristics when looking for aesthetic features which code can exhibit.

Starting from the naïve understanding that form should follow function,

we’ve examined how Alexander’s theory of patterns, and its significant in-

fluence on the programming community59, points not just to an explicit con-

ditioning of form to its function (in which casewewould all write hand-made

Assembly code), but rather to an elusive, yet present quality, which is both

problem- and context-dependent. It is a quality that is aware of the context

that the writer and reader bring with them, and of the context that it pro-

vides them, making it habitable. Software architecture and patterns aren’t,

however, explicitly praised for their beauty, perhaps because they disre-

gard these contexts—by definition, they’re high-level abstractions. Generic

solutions are rarely elegant solutions. Circling back to our investigation of

software as craftsmanship, we now turn to examine more closely both the
57The example of the best pattern to retro-fit an air conditionner on a building would be a

non-problem if the air-conditionning had been designed in from the get-go https://wiki.

c2.com/?PatternsAreNotTheLesserOfTwoEvils.
58Peter Norvig highlights that most patterns in the original book have much simpler imple-

mentations in Lisp, see: urlhttp://www.norvig.com/design-patterns/design-patterns.pdf
59even spawning short-lived debates about his quality without a name on stackover-

flow: https://stackoverflow.com/questions/458242/quality-without-a-name-

qwan-examples.
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tools and the material of programmers: programming languages.
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5 Programming languages as semantic material

Programming languages have so far been set aside when examining which

sensual aspects of source code resulted in what could be deemed a ”beau-

tiful” program text. Since we’re focusing on semantics (deep-structure)

represented through syntax (surface-structure), and since programming

languages are in essence the frame for defining legal syntax, this section

examines the influence of programming languages in the aesthetic features

of source code. To do, we first go over a broad description of programming

languages, concluding on what makes a programming language expres-

sive. Second, we relate their formal aspect to Goodman’s Languages of

Art, and assess whether or not they are a good fit as an artistic, expres-

sive system. Third, we touch upon the problem of semantics in program-

ming languages, and how they might differ from a human understanding of

semantics. Finally, we highlight a couple of computing-specific concepts

which are made explicit by programming language research, and further

define the kinds of concepts that are defined and manipulated when writ-

ing code.

All in all, this will allow us to highlight how programming languages engage

with the problem of aesthetics and understanding from a systemic point

of view, and how they act as an interface between human and machine

understanding.

5.1 Theoretical programming languages

A programming language is a strictly-defined set of syntactic rules and

symbols for describing instructions to be executed by the processor. The

history of programming languages is, amongst others, the history of de-

coupling the means of creating softwarefrom hardware. The earliest pro-

gramming languages were embedded in hardware itself, such as piano rolls
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and punched cards for Jacquard looms. Similarly, the first electric comput-

ers then required manual re-wiring of the mainframes in order to implement

any change in the algorithm being computed, which then gave way to the

stack of cards fed into the machine (similar to those used to programmed

the Apollo landing unit whose source code we’ve seen above). It is with

the shift to the stored-program model, at the dawn of the 1950s, that the

programs could be written, stored, recalled and executed in their electro(-

mecha)nical form, essentially freeing the software result from any immedi-

ately material representation.

This engineering tendency to separate software from hardware saw a par-

allel in the development of programming languages themselves. Based on

Turing’s design, any instruction processed by the machine, needs to, ulti-

mately, execute one of the built-in (literally, hardwired) instructions of the

processor. Also called machine language, these instructions set describe

the specific implementation of the most common operations executed by

a computer (e.g. add, move, read, load, etc.). While these are represented

as binary numbers to the processing unit (as is everything else), some of

the first programming languages did not require the writer to write those

numbers themselves. Instead, they could use a family of languages called

Assembly, which are instructions whose syntax is loosely based on En-

glish and translates in turn to machine instructions. Considered today as

some of the most low-level code one can write, Assembly languages were

machine-dependent, featuring a one-to-one translation from English key-

words to the kind of instruction sets they were programmed to generate.

As such, a program written on a particular model of a computer could not

be executed without any modifications on a another machine.

The first widely acknoweldged high-level language which allowed for a

complete decoupling of hardware and software was FORTRAN60. At this

point, programmers did not need to care about the specifics of the machine

60With Plankalkül, Short Code and Autocode as partial proposals before it.
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that they were running on anymore. Moving away from ”hand-crafted” As-

sembly code, FORTRAN, and the subsquent COBOL, Lisp and ALGOL 58

also started being concerned with the specific definition of their syntax in a

non-ambiguous manner. Using BNF notation, it became possible to formal-

ize their syntactic rules in order to prevent any unxepected behaviour and

support rigorous reasoning for the implementation and research of current

and subsequent languages. With such specifications, and with the decou-

pling from hardware, programming languages became, on paper, context-

free.

The context-free grammatical basis for programming allowed for the fur-

ther development of compilers and interpreters. These two are themselves

binary programs which, given an syntactically-valid program text, output

their machine code representation, a representation which can then be ex-

ecuted by the CPU61. A defining aspect of programming languages hence-

forth is their theoretical lack of ambiguity, both in their roots in formal

mathematic notation (for instance, Plankalkül was based on Frege’s Be-

griffschrift) and their physical representation (punch cards are essentially

discreete—hole or no hole).

Nowadays, most programming languages are Turing-complete: their syn-

tax can implement a Turing machine and therefore simulate any possi-

ble computational aspects of any physical computer. This means that

any programming language that is Turing-complete is equivalent to any

other Turin-complete programming language, creating essentially a chain

of equivalency between all programming languages. And yet, programming

language history is full of rise and fall of languages, of hypes and dissa-

pointments, of self-claimed beautiful ones and criticized ugly ones. This

is because, given such a wide, quasi-universal problem set, there are dif-

61The main difference between a compiler and an interpreter is that the compiler parses

the whole program text as once, resulting in a binary object, while interpreters parse only one

line at a time, which is then immediately executed
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ferent approaches to doing so, echoing what Gilles Gaston-Granger calls

style, as a formal way to approach the production and communication of

aesthetic, linguistic and scientific works[47]. We’ve already seen one dif-

ference in approaching the domain of computation: compilation vs. inter-

pretation. Another high-level category we turn to now is that of program-

ming paradigms.

A programming paradigm is an approach to programming based on a co-

herent set of principles, sometimes involvingmathematical theory. Some of

these concepts include hierarchy (in OOP), symbol manipulation (in func-

tional languages), events (such as in Java) or concurrency (in Go). Each

paradigm supports a set of concepts that makes it the best for a certain

kind of problem[48]. These concepts in turn act as stances which infle-

unce how to approach, represent and prioritize all basic components that

are involved in a programming language:

• data (what kinds of basic datatypes are built-in the language, e.g.

signed integers, classes)

• primitive operations (how can the programmer directly operate on

data, e.g. boolean logic, assignments, arithmetic operations)

• sequence control (how the flow of the program can be manipulated

and constrained, e.g. if, while statements)

• data control (how the data can be initialized and assigned, e.g. type-

safe vs. type-unsafe)

• storage management (how the programming language handles in-

put/output pipelines)

• operating environment (how the program can run, e.g. virtual ma-

chine or not)
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5.1.1 Theoretical qualities of programming languages

Every programming language of practical use takes a particular approach

to those basic components, sometimes backed by an extended rationale

(e.g. ALGOL 68), or not (e.g. JavaScript). In the case in which we are

circumscribed to context-free grammars, it would be possible to optimize

a particular language for an objective standard (e.g. compile time, time

use, cycles used). Still, computers exist to solve problems, those problems

are diverse in nature and therefore necessitate different approaches (as

we’ve seen in our discussion of the limitations of patterns above62). These

different approaches to what is referred to as the problem domain in turn

influenced the development of those different paradigms, since a prob-

lem domain might have different data representations (e.g. objects, text

strings, formal rules, dynamic models, etc.). Two of the early programming

languages, FORTRAN and Lisp, addressed to very different problem do-

mains: the accounting needs of businesses and the development of formal

rules for artificial intelligence, respectively63. Some of the overarching pro-

gramming paradigms are imperative (FORTRAN), functional (Lisp), object-

oriented (Smalltalk) or logic (Prolog). Without diving deeper in some of the

worldmaking assumptions of each of these paradigms, they are here suffi-

cient proof to show that, while there is only one Turing-completeness, there

are widely different approaches to it, some being better than others when

given a specific problem.

What makes a good programming language is a matter which has been

discussed amongst computer scientists, at least since the GOTO statement

has been publicly considered harmful. Some of these discussions include

both subjective arguments over preferred languages, as well as objective

arguments related to performance and ease-of-use. According to Pratt and

62See awk as a kind of fundamentally pattern-based scripting language.
63For a specific discussion of these differences and how they are manifested aesthetically,

see Kernighan on Pascal and C: https://www.lysator.liu.se/c/bwk-on-pascal.html
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Zelkowitz:

The difference among programming languages are not quanti-

tative differences in what can be done, by only qualitative dif-

ferences in how elegantly, easily and effectively things can be

done.[49]

Without then jumping immediately to aesthetic details of the languages

they write in, programmers still express preferences (if not outright alle-

giances, sometimes calling themselves Pythonistas, or Rubyists). Onemust

also keep in mind that there is a difference between considering a pro-

gramming language good or beautiful in itself, and considered the programs

written in the programming language. Turing-completeness offers an inter-

esting challenge to the Sapir-Whorf hypothesis—if natural languages might

only weakly affect the kinds of cognitive structures speakers of those lan-

guages can construct, programming languages are claimed to do so to large

extents64, even though they can all do the same thing in theory—only how

they do it matters. These differences in the ways of doing illustrates how,

in reality, different programming languages are applicable to different do-

mains, and do so through different kinds of notations—different aesthetic

features when it comes to realizing the same task.

Of the two programs presented below, the output result is exactly the same,

but the aesthetic differences are obvious:

package main

import ”fmt”

func main() {

var greeting = ”Hey, there.”

fmt.Println(greeting)

64See Alan Perlis’s Epigrams on Programming: ”A language that doesn’t affect the way

you think about programming, is not worth knowing.”, https://web.archive.org/web/

19990117034445/http://www-pu.informatik.uni-tuebingen.de/users/klaeren/

epigrams.html
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}

The code above is written in Go, a language designed by Pike, Thompson

and Griesemer in 2009, while the code below is written in Java, designed

by James Gosling in 1995. Both are statically typed, compiled languages

that are heavily influenced by C/C++ syntax, but Go is significantly younger

than Java (relatively to programming languages’ short history)

import java.io.*;

public class Greeting

{

public static void main(String[] args)

{

String greeting = ”Hey, there”;

System.out.println(greeting);

}

}

These two snippets might seem very similar at first glance65From these two

snippets, we can explore some of the most important criteria in program-

ming language design: abstraction, simplicity and orthogonality[50], and

how they underpin the writing of good programs.

Abstraction is the ability of the language to allow for the essential idea of a

statement to be expressed without being encumbered by specifics which

do not relate directly to the matter at hand, or to no matter at all. Ab-

stract programming languages can lead to more succint code, and tend to

hide complexity (of the machine, and of the language), from the program-

mer. For instance, the Java snippet above explicitly states the usage of the

System object, in order to access its out attribute, and then call its println()

method. While a lot of code here might seem verbose, or superfluous, it

is in part due to it being based on an object-oriented paradigm. However,
65For a radically different approach, see: greeting = ”Hey there”; print greeting

, a valid program in Ruby, Python and Perl, all scripting languages.
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out object itself might seem to go particularly contrary to the requirement

of programming languages to abstract out unnecessary details: println()

is definitely a system call dealing with I/O, and therefore already implicitly

relates to the output; one shouldn’t have to specify it explicitly. In contrast,

Go abstracts away the system component of the print call inside the import

statement import ”fmt”. Printing, in Java, does not abstract the machine,

while printing, in Go, abstracts it away in order to focus on the actual ap-

pearance of the message (”fmt” stands for ”format”). Another abstraction is

that of the language name itself from the import statements. Whenwewrite

in Java, we (hopefully) know that we write in Java, and therefore probably

assume that the default imports come from the Java ecosystem—there

shouldn’t be any need to explicitly redeclare it. For instance, System.out

.println() isn’t written java.io.System.out.println(). In contrast, the Go

snippet hides the implicit import ”go/fmt”, allow the programmer to focus,

through visual clarity, on the real problem at hand, which is the logic of the

program. In this direction, languages which provide more abstraction (such

as Python), or which handle errors in an abstract way (such as Perl) tend

to have greater readability by focusing on the most import tokens, rather

than aggregating visual clutter—also called verbosity.

Related to abstraction, and a topic in itself, is the criteria of typing, the pro-

cess of specifiying the type of a variable or of a return value (such as inte-

ger, string, etc.). A strictly-typed language such as C++might end up being

unreadable because of its verbosity, while a type-free language might be

simple to read and write (at a small-scale), but dangerous to run in produc-

tion. The tradeoff here is again between being explicit and safe (because

a word cannot usually and intuitively be operated on in a similar way as a

floating-point number), and being implicit, subtle, and dangerous (such as

JavaScript’s very liberal understanding of typing). With experience, typing

can usually be inferred by purely aesthetic means: Python’s boolean values

are capitalized (True, False) and its difference between string and byte is
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represented by the use of double-quotes for the former and single-quotes

for the latter. In the case above, explicitly having to mention that greeting

is of type String is again redundant, since it is already hinted at by the

double-quotes (and, indeed, single quotes are byte types in Java as well).

Go doesn’t force programmers to explicitly declare variable types (they can,

if they want to), but in this case they let the computers do the heavy lifting

of specifying something that is already obvious to the programmer.

A particularly note-worthy example of an elegant solution to the tradeoff

between type safety and readability can be found in Go’s handling of error

values returned by functions:

d, _ := exec.LookPath(”date”)

fmt.Println(”Today is %s”, d)

The _ character which we see on the first line is the choice made by Go’s

designers to force the user to both acknowledge and ignore the poten-

tial error value that is returned by executing the external command. This

particular character, acting as an empty line, represents absence, not clut-

tering the layout of the source, while reminding subtly of the potential of

this particular statement to go wrong and crash the program. Abstraction

is therefore a tradeoff between explicitly highlighting the computer con-

cern (how to operate practically on some data or statement), and hiding

anything but the human concern (whether or not that operation is of im-

mediate concern to the problem at hand at all). As such, languages who

offer powerful abstractions tend not to stand in the way of the thinking

process of the programmer. This particular example of the way in which

Go deals with error-handling is a great example of the designer’s explicit

stylistic choice. In the words of Niklaus Wirth:

Stylistic arguments may appear to many as irrelevant in a tech-

nical environment, because they seem to be merely a matter of

taste. I oppose this view, and on the contrary claim that stylistic
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elements are the most visible parts of a language. They mirror

the mind and spirit of the designer very directly, and they are

reflected in every program written.[51]

Orthogonality, in turn, relates to the ability of a small set of simple syn-

tactics constructs to be recombined in order to achieve greater complex-

ity, while remaining independent from each other. A direct consequence

of such a feature is the ease with which the programmer can familiarize

themselves with the number of constructs in the language, and therefore

their ease in using them without resorting to the language’s reference. Re-

lating back to Ricoeur, the orthogonality of a language offers a simple but

powerful solution to the polysemy of the word (here, token) as embedded

within a broader sentence (here, statement). The expressivity of a state-

ment comes not just from the individual keywords, but rather from their

combination. For instance, the example of Lisp treats both data and func-

tions in a similar way, essentially allowing the same construct to be recom-

bined in powerful ways (again, the Lisp interpreter comes to mind), while

the Ruby language, and its foundational design choice which makes every

type (themselves abstracted away) an object allows for greater creativity,

through familiarity, in writing code, making the language itself more habit-

able. Orthogonality also implies independence, since all constructs operate

distinctly from each other, while remaining related, because in cooperation

with each other. This offers a solution to the cognitive burden of the non-

atomicity of computer programs, in which data can end up being tangled

in a non-linear program execution, and become unreadable. This unread-

ability is triggered, not by verbosity, but because of the uncertainty of, and

confusion about, the potential side-effects caused by any statement. Such

independence in all constructs in turn presents a kind symmetry, itself is a

well-accepted aesthetic feature of any artefact, in that the use of each of

the constructs is similar. This similarity eases the cognitive friction in writ-

ing and reading code since an orthogonal language allows the programmer
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to rely on the fact that, deep down, everything is the same, and not a col-

lection of quirks and arbitrary decisions. For example, the below C code is

illegal:

int[] getListOfPrimeNumbers(){

//-- this function is illegal!

}

The above code is a specific instance of one of those quirks: the fact that C

cannot return arrays from functions requires both a deep knowledge of the

language implementation and a willingness to accept that this is how things

are, even though other languages allow for such a feature. In this case,

the language exhibits an un-orthogonal property since the two constructs

(return and int[]) interact with each other in non-independent ways.

Finally, one of the consequences of such a feature is the shift from com-

puter semantic interpretation (usually connected to strongly-typed lan-

guages) to human-interpretation (and weakly-typed languages). Non-

orthogonality implies that the compiler (as a procedural representation of

the language) has the final say in what can be expressed, while orthog-

onal languages leave more leeway to the writer in keeping track of which

value and statement does what, allowing for both more creativity and more

uncertainty in the interpretation and execution of the program.

Both of these features, abstraction and orthogonality, ultimately relate to

simplicity:

Simplicity enters in four guises: uniformity (rules are few and

simple), generality (a small number of general functions provide

as special cases a host of more specialized functions, orthog-

onality), familiarity (familiar symbols and usages are adopted

whenever possible), and brevity (economy of expression is

sought).[52]

The point of a simple programming language is a programming language
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which does not stand in the way of the program being written, or of the

problem being addressed. Such a goal is achieved in part by having ac-

curate conceptual mappings between computer expression mapping and

human mapping (such as the code block-human sentence mapping[53]) If

one is to write a program related to an interactive fiction in which sentences

are being input and output in C, then the apparently simple data structure

char of the language reveals itself to be cumbersone and complex when

each word and the sentence that the programmer wants to deal with must

be present not as words, but as series of char (hence the origin of the name

of the data type string, as a continuous series of char). As we’ve seen, a

simple language does not mean that it is easy (perhaps the simplest lan-

guage of all being lambda-calculus, is far from an easy construct to grasp),

but that it is just a means to an end, akin to any other tool or instrument66.

Programming languages, however, are symbolic tools, manipulating sym-

bolic matter. As a formal system of symbols which can sustain creations

with aesthetic features, programming languages do share commonalities

with Goodman’s Languages of Art.

Goodman develops in his opus a systematic approach to symbols in art,

freed from any media-specificity (from pictorial symbols to musical nota-

tions and even time marks on clocks and watches). With it, he accom-

plished two things: he highlights the ways in which symbols systems have

expressive and communicative power (through the dyads of denotation and

exemplification, description and representation, possession and expres-

sion), and what are the kinds of requirement that such a system must have

in order to develop these expressive and communicative abilities. These

requirements are that of unambiguity, syntactic and semantic disjointed-

ness, and differentiation[54]. Looking at programming languages from this

perspective argues for their communicative and expressive power. From

66For a further parallel on musical instruments, see Rich Hickey’s keynote address at

RailsConf 2012: https://www.youtube.com/watch?v=rI8tNMsozo0
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the perspective of the computer, programming languages are unambigu-

ous insofar as any expression or statement will ultimately result in an unam-

biguous result by the CPU (if any ambiguity remains, the program crashes).

They are also syntactically and semantically disjointed (i.e. clearly distin-

guishable from one another). The use of formal notations, such as BNF,

had for aim to resolve any possible ambiguity in the syntax of the language

in a very clear fashion. The semantics of programming languages, as we

will see below, also aim at being thoroughly disjointed: a variable cannot

be of multiple types at the same time. Finally, programming languages are

also differentiated systems since no symbol can refer to two things at the

same time.

The tension arises when it comes to the criteria of unambiguity, from a

human perspective. The most natural-language-like component of pro-

grams, the variable and function names, always have the potential of be-

ing ambiguous (e.g. does int numberOfFlowers refer to the current number

of flowers in memory? To the total number of potential of flowers? To a

specific kind of number whose denomination is that of a flower?). We con-

sider this ambiguity a productive opportunity for creativity, and a hindrance

for program effectiveness. So, given the qualification of programming lan-

guages as symbolic systems, we could expand our short analysis above by

inspecting how programming languages allow for program texts which de-

note, label, represent, etc. in order to further argument how source code

has the potential, and has examples, of being an artistic mean of expression

and comprehension, from a cognitive point of view.

If they are aesthetic symbol systems, then they can also elicit emotional

responses. As we’ve seen with software patterns, what also matters to

programming languages is not just their design, but their situated use:

Before closing, let me mention another essential ingredient, one

that hardly ever gets mentioned: It must be a pleasure and a

joy to work with a language, at least for the orderly mind. The
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language is the primary, daily tool. If the programmer cannot

love his tool, he cannot love his work, and he cannot identify

himself with it.[51]

Bringing it back to architecture, the language designer bruce McLennan

further presses the point:

There are other reasons that elegance is relevant to a well-

engineered programming language. The programming language

is something the professional programmer will live with - even

live in. It should feel comfortable and safe, like a well-designed

home or office; in this way it can contribute to the quality of the

activities that take place within it. Would you work better in an

oriental garden or a sweatshop?[55]

5.1.2 Practical qualities of programming languages

Concrete use of programming languages operate on a different level of

formality: if programming paradigms are top-down strategies specified by

the language designers, they find their mirror in the bottom-up practices

of softare developers (to borrow Michel De Certeau’s terminology). Such

practices crystallize, for instance, in idiomatic writing. Idiomaticity refers,

in traditional linguistics, to the realized way in which a given language is

used, in contrast with its possible, syntactically-correct and semantically-

equivalent, alternatives. For instance, it is idiomatic to say ”The hungry dog”

in English, but not ”The hungered dog” (a correct sentence, whose equiv-

alent is idiomatic in French and German). It therefore refers to the way in

which a language is a social, experiential construct, relying on intersubjec-

tive communication[56]. Idiomaticity is therefore not a purely theoretical

feature, but first and foremost a social one. This social component in pro-

gramming languages is often reliant on knowledge of said language, and

of its quirks. In this sense, programming language communities are akin
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to hobbyists clubs, with their meetups, mascots, conferences and inside-

jokes67.

So an idiom in a programming language depends on the human interpreta-

tion of the formal programming paradigms (since, in most programming lan-

guages today and especially in scripting languages, paradigms are blended

and no language is purely single-paradigmatic). Such an interpretation is

also manifested in community-created and community-owned documents,

such as The Zen of Python68.

The Zen of Python shows how the philosophy of a programming language

relates to the practice of programming in it. Without particular explicit di-

rectives, it nonetheless highlights attitudes that one should keep in mind

and exhibit whenwriting Python code. Such a document sets themood and

the priorities of the Python community at large (being included in its official

guidelines in 2004), and highlights a very perspective on the priorities of

theoretical language design. For instance, the first Zen is:

Beautiful is better than ugly.

An obvious statement which prompts non-obvious questions (how do I

write beautiful code? Can I really tell if my code is ugly?), this epigram sets

the focus on a specific aspect of the code, rather than on a specific imple-

mentation. With such broad statements, it also contributes to strengthen-

ing the community bonds by creating shared, folk knowledge. In practice,

writing idiomatic code requires not only the awareness of the community

standards around such an idiomaticity, but also knowledge of the language

construct themselveswhich differentiate it from different programming lan-

guages. For instance, in Python:

for i in range [0, 1, 2, 3, 4, 5]:

67For an example of such joke, see Gary Bernhardt’s talk on JavaScript: https://www.

destroyallsoftware.com/talks/wat
68Tim Peters, 1999: https://docs.python-guide.org/writing/style/#zen-of-

python
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print i

is semantically equivalent to:

for i in range(5):

print i

but only the second example is considered idiomatic Python, partly be-

cause it is specific to Python, and because more performing than the first

example, due to the desire of the developers of Python to encourage id-

iomaticity (i.e. what they consider good Python to be). Beautiful code, then

seems to be a function of knowledge, not just of what the intent of the pro-

grammer is, but knowledfge of the language itself as a differentiated idiom.

Another example69 of beautiful, because idiomatic, Python code is:

@lru_cache(3)

def fib(n):

return n if n < 2 else fib(n - 1) + fib(n - 2)

This function calculates the Fibonacci sequence (a classic exercise in com-

puter programming), but makes a clever use of decorators in Python. The

@lru_cache(3) line caches the last 3 results in the least-recently used order,

closely mirroring the fact that the Fibonacci sequence only ever needs to

compute the terms n, n-1 and n-2, thus closely aligning the language do-

main and the problem-domain. Through this, the programmer uses a key,

advanced feature of the language in order to make the final program more

terse, more precise, and more closely aligned with the problem domain

than other implementations, to the detriment of a decrease in readability

for non-Pythonistas.

Idiomaticity reflects what the aesthetic intent of the language designers

and implementers is. Notation matters, and designers want to encourage

good practices through good notations, assuming that programmers would

69From https://www.quora.com/What-makes-some-code-beautiful
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gravitate towards what is both themost efficient and the best-looking solu-

tion. For example, one of the biggest differences between object-oriented

and non-object-oriented programming is the possibility to identify the actor

of an action using purely syntactic means[57]. Another way to encourage

writing good code is through the addition of syntactic sugar. Syntactic

sugar describes the aesthetic features of the language who are variants

of a similar feature, and where the only difference between them is their

appearance—i.e. visual, semantic shortcuts. The looping examples above

are good instances of syntactic sugar, albeit with performance differences.

The Ruby language is riddled with syntactic sugar, and highlights how syn-

tactic sugar can ”sweeten” the reading process, aiming for more clarity,

conciseness, and proximity to natural languages. In Ruby, to access a

boolean value on an attribute of an object, one would write:

if Being.alive

puts ”and well”

The syntactic sugar comes in the form of the question mark:

if Being.alive?

puts ”and well”

There is absolutely no functional differences in the statements above, and

the question mark is just here to make the code seem more natural and

intuitive to humans. Checking for a boolean (or non-nil value) in an if state-

ment is, in the end, the equivalent of asking a question about that value

Here, Ruby makes that explicit, therefore making it easier to read with the

most minimal amount of additional visual noise (i.e. one character).

We’ve seen how programming languages can be subjected to the criteria

of goodness, but how those criteria are only there to ultimately support the

writing of beautiful code. Such a support exists via design choices (ab-

straction, orthogonality, simplicity), but also through the practical uses of

programming languages, notably in terms of idiomaticity and of syntactic
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sugar, allowing some languages more readability than others (e.g. APL vs.

Ruby). Like all tools, it is the (knowledgeable) use of programming lan-

guages which matters, rather than their design, and it is the problems that

they are used to deal with, and the way in which they are dealt with which

ultimately informswhether or not a program text in that languagewill exhibit

aesthetic features.

Since programming languages are meant to help programmers solve se-

mantic issues (in the problem domain) through elegant syntactical means,

and since they act as interfaces between the programmer and themachine,

we now turn to the question of how semantics are represented program-

matically, and whether machine understanding exists.

5.2 Programming Semantics

On of the reasonings behind the formal approach to programming lan-

guages, besides the very material machine requirements of a circuit design

based on discreete distinctions, is, according to the designers of ALGOL 58,

the dissatisfaction with the fact that subtle semantic questions remained

unanswered due to a lack of clear description[58]. If the goal of a program

text is to be syntactically and semantically clear, and if programming lan-

guages are syntactically unambiguous, we examine here under what form

do semantics exist as computer representations, and what kind of specific

semantic issues are at stake when writing program texts. The very require-

ment for semantic representation in program language design is first and

foremost due to the fact that:

The first and most obvious point is that whenever someone

writes a program, it is a program about something.[20]

A statement which is itself followed by the tension between semantics
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and syntax. Semantics have the properties of aboutness and directed-

ness (they point towards something external to them), and syntax has the

property of (local) consistency and combination (they function as a mostly

closed system). Looking at programing languages as applied mathemat-

ics, in the sense that it is the art and science of manipulating formal to-

kens, tokens which in turn represent elements in the world of some kind,

we arrive at the issue of defining semantics (meaning) in strictly computer-

understandable terms.

Meaning is created by an active reading, in which the linguistic form en-

ables interpretation, rather than exclusively conveying information. Wino-

grad states that interpretation happens through grounding, essentially con-

textualizing information in order to interpret it and extract meaning. He

identifies three different kinds of grounding. The experiential grounding,

in which verification is made by direct observation, related to the role of

the senses in the constitution of the conceptual structures that enable our

understanding of the world—also known as the material implementation of

knowledge. The formal grounding relies on logical and logical statements

to deduce meaning from previous, given statements that are known. Fi-

nally, social grounding relies on a community of individuals sharing similar

conceptual structures in order to qualify for meaning to be confirmed. Of

these three groundings, programming languages rely on the second.

The reason for the bypassing of experiential and community grounding can

be found in one of the foundations of computer science, as well as informa-

tion science: Claude Shannon’s mathematical theory of communication. In

it, he postulates the separation of meaning from information, making only

the distinction between signal and noise. Only formal manipulation of sig-

nal can then reconstitute meaning70. Indeed, according to Brian Cantwell-

Smith, computing is meaning mechanically realized, due to the fact that

70An affordance that is shared with literature, according to Peter Suber[59]
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the machine comes from non-mechanical origins71. We think of computers

as digital but they can be seen as only the digital implementation of the

phenomenon of computation, with its roots in formal logic. It is therefore

through formal logic that one can recreate meaning through the exclusive

use of the computer.

A computer is actually a collection of layers, each defining different lev-

els of machines, with different semantic capabilities. First, it is a physical

machine, dealing with voltage differences. These voltage differences are

then quantized into binary symbols, in order to become manipulable by a

logical machine. From this logical machine is built an abstract machine,

which uses logical grounding in order to execute specific, pre-determined

commands. The interpretation of which commands to execute, however,

leaves no room for the kind of semantic room for error that humans exhibits

(particularly in hermeneutics). It is a strictly defined mapping of an input to

an output, whose first manifestation can be found in the symbols table in

Turing’s seminal paper. The abstract machine, in turn, allows for high-level

machines (or, more precisely, high-level languages which can implement

any other abstract machine). These languages themselves have linguistic

constructs which allow the development of representational schemes for

data (i.e. data structures such as structs, lists, tuples, objects, etc.).

Finally, the last frontier, so to speak, is the subject domain: the things that

the programmer is talking about. These are then represented in data struc-

tures, manipulated through high-level languages, processed by an abstract

machine and executed by a logical machine which turns these representa-

tions into voltage variations.

The subject domain is akin to a semantic domain, a specific conceptual

place that shares a set of meanings, or a language that holds its mean-

ing, within the given context of this place. And there is only one con-

71Retrieved from: https://web.archive.org/web/20160826234606/http:

//ageofsignificance.org/aos/en/aos-v1c0.html
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text which the computer provides: itself. Within this unique context, se-

mantics still hold a place in any programming language textbook, and is

addressed regularly in programming language research. Concretely, se-

mantics in computer programming focuses on how variables and functions

should behave[58]. Given the statement l := j + p, the goal of program-

ming language semantics is to deduce what is the correct way to process

such a statement; there will be different ways to do so depending on the

value and the type of the j and p variables. If they are strings, then the

value of j will be their concatenation. If they are numbers, it will be their

addition, and so on.

This problem is called the use-mention problem, which requires the rec-

onciliation of the name of entities, tokens in source code, with the entities

themselves, composed of a value and a type. The way this is achieved is

actually quite similar to how syntax is dealt with. The compiler (or inter-

preter), after lexical analysis, constructs an abstract syntax tree represen-

tation of the statement, separating it, in the above case, in the tokens: l, :=,

j, + and p. Among these, := and + are considered terminal nodes, or leaves,

while the other values still need to be determined. The second pass repre-

sents a second abstract syntax tree through a so-called semantic analysis,

which then decorates the first tree, assigning specific values (attributes)

and types to the non-terminal nodes, given the working environment (e.g.

production, development, test). This process is called binding, as it asso-

ciates (binds) the name of a variable with its value and its type. Semantics

is thus the decoration of parsed ASTs, evaluating attribute—which can be

either synthesized or inherited. Since decoration is the addition of a new

layer (a semantic layer) on top of a base layer (a syntactic one), but of a

similar tree form, this leads to the use of what can be described as ameta-

syntax tree.

In terms when the values are being bound, there are multiple different bind-

ing times, such as language design time (when the meaning of + is defined),
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compile time, linker time, and programming writing time. It is only during

the last one of these times, that the programmer inserts their interpretation

of a particular meaning (e.g. j := ”jouer”, meaning one of the four possi-

ble actions to be taken from the start screen of a hypothetical video game).

Such a specific meaning is then shadowed by its literal representation (the

five consecutive characters which form the string) and its pre-defined type

(strings, here in Go). This process does show that the meaning of a for-

mal expression can, with significant difficulty and clumsiness, nonetheless

be explained; but the conceptual content still eludes the computer, vary-

ing from the mundane (e.g. a simple counter) to the almost-esoteric (e.g.

a playful activity). Even the most human-beautiful code cannot force the

computer to deal with new environments, in which meaning has, impercep-

tibly, changed. Indeed,

In programming languages, variables are truly variable, whereas

variables in mathematics are actually constant[51].

From this perspective, the only thing that the computer does know that

the programmer doesn’t, and which would ”make its life easier”, the same

way that the programmer’s life can be made easier through beautiful code,

is how the code is represented in an AST, and where in physical memory

is located the data required to give meaning to that tree[52]. We might

hypothesize that beautiful code, from the computer’s perspective, is code

which is tailored to its physical architecture, a feat which might only be

realistically available when writing in Assembly72. Before we turn to how

such a code is written by the particular group of humans referred to as

hackers, there are nevertheless some concepts in programming which do

not have simple meaning for humans, re-iterating the need of aesthetics to

make these concepts graspable.

72For a mythical telling of such a process, see the story of Mel, A Real Programmer: https:

//www.cs.utah.edu/~elb/folklore/mel.html.
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5.3 Idiosyncracies of computing-specific constructs

Computation, in its philosophical sense, is a complex and debated

concept[17, 60]. In short, software isn’t simple, it’s a cognitive artefact

which can be understood at the physical, design and intentional levels[61].

With odern programming languages allowing us to safely ignore the first

level, it is at the interaction of the design (programming) and intentional

(human) level that things get complicated; the question ”what does a Tur-

ingmachine do?” has n+1 answers, 1 syntactic answer, and n semantic ones,

based on however many interpretations.

Without diving into the depths of the philosophy of computation, we high-

light two programming concepts which tend to be evident to the computer

(evident in the sense some see them as emergent properties of compu-

tation), and yet quite complex to deal with for humans: referencing and

threading.

Referencing is a surface-level consequence of the use-mention problem

referred to above, the separation between a name and its value, with the

two being bound together by the address of the physical location in mem-

ory. As somewhat independent entities, it is possible to manipulate them

separately, with consequences that are not intuitive to grasp. Some pro-

gramming languages allow for this direct manipulation, through something

called pointer arithmetic73. Indeed, the possibility to add and substract

memory locations independent of the values held in these locations, as well

as the ability to do arithmetic operations between an address and its value

isn’t a process whose meaning comes from a purely experiential or social

perspective, but rather exists meaningfully for humans only through logi-

cal grounding, by understanding the theoretical architecture of the com-

puter. What also transpires from these operations is another dimension of

the non-linearity of programming languages, demanding complex mental

73For better or worse, C is very liberal with what can be done with pointers.
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models to be constructed and updated to anticipate what the program will

ultimately result in when executed. Notation attempts at remediating those

issues by offering symbols to represent these differences, such as:

int date = 2046; // ‘date‘ refers to the literal value of the number

2046

int *pointer = &date; // ‘pointer‘ refers to the address where the

value of ‘date‘ is stored, e.g. 0x5621

*pointer = 1996; // this accesses the value located at the memory

address held by ‘pointer‘ (0x5621) and sets it to 1996

std::cout << date; // prints the literal value of date, at the

address 0x5621: 1996

The characters * and & are used to signal that one is dealing with a variable

of type pointer, and that one is accessing the pointed location of a variable,

respectively. Line 2 of the snippet above is an expression called derefer-

encing, a neologismwhich is perhaps indicative of the lack of existingwords

for referring to that concept. In turns, this hints at a lack of conventional

conceptual structures to which we can map such a phenomenon.

Threading is the ability to do multiple things at the same time. While the

concept itself is simple, to the point that we take it for granted in modern

computer applications since the advent of time-sharing systems. However,

the proper handling of threading when writing and reading software is itself

complex. This involves the ability to demultiply the behaviour of routines

(already non-linear) to keep track of what could be going on at any point in

the execution of the program, including use and modification of shared re-

sources, the scheduling of thread start and end, as well as synchronization

of race conditions (e.g. if two things happen at the same time, which one

happens first, such that the consistence of the global state is preserved?).

As Edward A. Lee put it:

Although threads seem to be a small step from sequential

computation, in fact, they represent a huge step. They dis-
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card the most essential and appealing properties of sequen-

tial computation: understandability, predictability, and deter-

minism. Threads, as a model of computation, are wildly non-

deterministic, and the job of the programmer becomes one of

pruning that nondeterminism[62].

Threading shows how the complexity of a deep-structure needs to be ad-

equately represented in the surface. Once again, aesthetically-satisfying

(simple, concise, expressive) notation can help programmers in under-

standing what is going on in a multi-threaded program, by removing ad-

ditional cognitive overload generated by verbosity74. Here are two of the

simplest examples, in C and in Go:

74For an example of code that looks good on the surface, but is deeply wrong, see

p.105 of https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/

perfbook/perfbook-e2.pdf.
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#include <iostream>

#include <thread>

void recall(int date)

{

std::cout << date << ’\n’;

}

int main()

{

std::thread thread(recall, 2046);

thread.join();

cout << ”We’re done!”;

return 0;

}

package main

import (

”fmt”

)

func recall(int date) {

fmt.Println(date)

}

func main() {

go recall()

fmt.Println(”We’re done!”)

}

Once again, we see how the abstraction provided by some language con-

structs in Go result in a simpler and more expressive program text. In this

case, the non-essential properties of the thread are abstracted away from
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programmer concern. The double-meaning embedded in the go keyword

even uses a sensual evokation of moving away (from the main thread) in

order to stimulate implicit understanding of what is going on.

In conclusion, programming languages, as aesthetic symbol systems, are

essential in allowing for aesthetic properties to emerge during the writ-

ing process of program texts. They present affordances for the abstrac-

tion and combination of otherwise-complex programming concepts, for

the development of familiarity through their idiomatic uses and for ease of

readability—to the point that it might become transparent to experienced

readers. Still, since understanding is at stake, there is a kind of beauti-

ful code which bypasses any semantic representation embedded in these

languages by speaking directly to the machine. This is the kind of beauty

which we look at in the following section.
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6 Aesthetics of hacks

Along with software developers and source code poets, another commu-

nity of programwriters are the hackers. While there is no absolute, uncross-

able boundary between each of these communities, they still differentiate

themselves mainly in terms of purpose and in terms of means. By examin-

ing the purpose of the code written by hackers, and the way in which it is

written, we highlight yet another perspective on the aesthetics of source

code, and how it intersects once more with understanding, architecture,

and skill.

To do so, we first disambiguate the term to clarify these purposes and

means. Then, we examine specific examples of software written by hack-

ers, from the one-liner to the UNIX operating system, with a detour through

an esoteric programming language and a demoscene program. These will

provide an empirical basis to touch upon the concepts of elegance and

unscrutability in writing and reading code.

6.1 Principles of hackers

Often referred to as malicious computer manipulators by popular media,

the term hacker nonetheless refers to a more specific (and less harmful)

part of the computer programmer group. In short, hackers are individu-

als whose priorities can be summed up in the hacker ethic, formalized in

Stephen Levy’s history of the community[63]. This set of principles de-

scribes the outlook that hackers have on information, authority, beauty and

skill, all seen through the lens of the computer. Of all of these, skill is per-

haps the most defining aspect. The earnest acquisition and execution of

computer-related skills is a crucial requirement for being recognized as a

hacker, and these positions vis-à-vis authority seem to be taken in most

part to support such an approach.
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Information wants to be free provides the fertile epistemic environment for

learning more about any topic. This stance is particularly highlighted in the

hacker perspective on copyright, emphasizing the difference between free

software, as in free of charge, and free software, as in liberated from any

restrictions in its diffusion, modification and replication. In this context,

code is considered as liberated knowledge, rather than as a constrained

commodity, allowing other hackers to inspect and learn from any freely dis-

tributed software. This highlights amaterial stance of computer know-how:

only through direct engagement can one really know something—hackers

learn by doing, by tinkering, sometimes breaking systems, and considering

these breaks as contributions towards greater understanding of the system

they’re dealing with.

Similarly, any authority or credential system which isn’t based on practical

know-how is distrusted: merit is based on what one can do alone, without

regards for race, gender or class75. It is what one can do (most often with

a technological system), which determines their value to the eyes of the

hacker community, and not what degrees they obtain76. For instance, for

hackers, the ”true hero” of the Apple-led computer revolution isn’t Steve

Jobs, the product manager, but rather Steve ”Woz” Wozniak, the engineer

and developer behind the Apple I77, as well as the infamous blue boxes.

For hackers, what is claimed to be known is only relevant insofar as it can

be actually done, and preferably well. Knowledge is therefore a prerequi-

site for excellence, but isn’t sufficient. Indeed, another dimension is how

it should be done: to hackers, it matters little what a source of authority

tells them they can or cannot do with a particular system. Furthermore,

75Incidentally, most of the well-known hackers are overwhelmingly white and affluent,

even though there is anecdotal evidence of inclusivity for the LGBTQ+ communities in hacker

groups.
76Again, most of the well-known hackers of that community gravitated around elite US

universities.
77For instance, see Wire’s portrait here: https://www.wired.com/2006/02/forget-

jobs-lets-worship-woz/
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whether it can be done informs the engagement in these systems far more

than whether or not it is allowed, or if it should be done. This hierarchy

of priorities is perhaps also the reason why hackers became associated in

the public consciousness as malevolent actors, since technical exploits can

sometimes straddle the line of what is considered to be legal78.

Finally, hackers believe that you can create art and beauty on a computer,

but such a statement is to be understood with an emphasis on the process

itself, rather than the result. Phreaking, a phenomenon immediately pre-

dating computer hacking, offers a particularly telling example of how the

means are valued more than the ends. John Draper, also known as Cap’n

Crunch, adapted this moniker because the Captain Crunch cereal boxes

included, for a while, a whistle which could generate a specific 2600KHz

tone, which could in turn manipulate the routing of phone lines. He then

used such a whistle from a phone booth to dial from operator to operator

accross the world, in order to reach, in the end, the very phone booth he

was calling from—only to hear a busy tone[64]. Hackers can be known for

finding unexpected solutions to complex problems with very little concrete

practical use, except to prove that it can be done, and can be done cleverly.

This last point highlights an ambiguity in the hacker attitude: with under-

tones of anarchism, neo-libertarianism and hippie culture, they appear to

both strive for a better society but exhibit at the same time a radical propen-

sity to interact with a computer for its own sake. The attention given to the

technical feat sometimes overshadows the practical use, as we’ve seen

above, and the direct social consequences, focusing rather on the emi-

nently self-sufficient entertainment value of interacting in clever ways with

a computer—as stated by Linus Torvalds[65]. Witness to some of the early

hackers in the 1960s at MIT, Weizenbaum describes them as such:

To hack is, according to the dictionary, ”to cut irregularly, with-

78Aaron Swartz vs. United States represents a particular case of the overlap between the

hacking and legal frameworks.
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out skill or definite purpose; to mangle by or as if by repeated

strokes of a cutting instrument”. I have already said that the

compulsive programmer, or hacker as he calls himself, is usually

a superb technician. It seems therefore that he is not ”without

skill” as the definition will have it. But the definition fits in the

deeper sense that the hacker is ”without definite purpose”: he

cannot set before him a clearly defined long-term goal and a plan

for achieving it, for he has only technique, not knowledge. He

has nothing he can analyze or synthesize; in short, he has noth-

ing to form theories about. His skill is therefore aimless, even

disembodied. It is simply not connected with anything other

than the instrument on which it may be exercised. His skill is

that of a monastic copyist who, though illiterate, is a first rate

calligrapher.[66]

While he looks down on hackers, perhaps unfairly, from the perspective of

a computer scientist whose theoretical work can be achieved only through

thought, pen and paper, the point still remains: hackers are first and fore-

most technical experts who can get lost into technics for their own sake.

From a broad perspective, hackers therefore seem to exhibit an attitude of

direct engagement, subverted use and technical excellence. We now look

at some instances of hacker source code to identify how such an approach

in manifested concretely.

6.2 One-liners

The one-liner is a piece of source code which fits on one line, and is usually

intepreted immediately by the operating system. They are terse, concise,

and eminently functional: they accomplish one task, and one task only.

This binary requirement of functionality (in the strict sense of: ”does it do

what it’s supposed to do, or not?”) actually finds a parallel in a different kind
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of one-liners, the humoristic ones in jokes and stand-up comedy. In this

context, the one-liner also exhibits the features of conciseness and impact,

with the setup conflated with the punch line, within the same sentence.

One-liners are therefore self-contained, whole semantic statements which,

through this syntactic compression, appear to be clever—in a similar way

that a good joke is labelled clever.

In programming, one-liners have their roots in the philosophy of the UNIX

operating system, as well as in the early diffusion of computer programs for

personal computer hobbyists[67]. On the one side, the Unix philosophy is

fundamentally about building simple tools, which all do one thing well, in or-

der to manipulate text streams[68]. Each of these tools can then be piped

(directing one output of a program-tool into the input of the next program-

tool) in order to produce complex results—reminiscing of the orthogonality

feature of programming languages. Sometimes openly acknowledged by

language designers—such as those of AWK—the goal is to write short pro-

grams which shouldn’t be longer than one line. Given that constraint, a

hacker’s response would then be: how short can you make it?

If writing one-line programs is within the reach of any medium-skilled pro-

grammer, writing the shortest of all programs does become amatter of skill,

coupled with a compulsivity to reach the most syntactically compressed

version. For instance, Guy Steele79 recalls:

This may seem like a terrible waste of my effort, but one of the

most satisfying moments of my career was when I realized that I

had found a way to shave one word off an 11-word program that

[Bill] Gosper had written. It was at the expense of a very small

amount of execution time, measured in fractions of a machine

cycle, but I actually found a way to shorten his code by 1 word

and it had only taken me 20 years to do it[69].

79Influential langugage designer, who worked on Scheme, ECMAScript and Java, among

others.
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This sort of compulsive behaviour is also manifested in the practice of code

golf, challenges in which programmers must solve problems by using the

least possible amount of characters—here, the equivalent of par in golf

would be Kolmogorov complexity80. So minimizing program length in re-

lation to the problem complexity is a definite feature of one-liners, since

choosing the right programming language for the right taks can lead to a

drastic reduction of syntax, while keeping the same expressive and effec-

tive power. Tasked with parsing a text file to find which lines had a nu-

merical value greater than 6, Brian Kernighan writes the following code in

C81:

80See: https://en.wikipedia.org/wiki/Kolmogorov_complexity
81From Succesful Language Design, Brian Kernighan at the University of Nottingham,

https://www.youtube.com/watch?v=Sg4U4r_AgJU
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#include <stdio.h>

#include <strings.h>

int main(void){

char line[1000], line2[1000];

char *p;

double mag;

while(fgets(line, sizeof(line), stdin) != NULL) {

strcpy(line2, line);

p = strtok(line, ”\t”);

p = strtok(NULL, ”\t”);

p = strtok(NULL, ”\t”);

sscanf(p, ”%lf”, &mag);

if(mag > 6) /* $3 > 6 */

printf(”%s”, line2);

}

return 0

}

The equivalent in AWK, a language he designed, and which he actually

refers to in the comment on line 15, presumably as a heuristic as he is writ-

ing the function, is:

awk ’$3 > 6’ data.txt

The difference is obvious, not just in terms of formal clarity and cleanliness

of the surface structure, but also in terms of matching the problem domain:

this obviously prints every line in which the third field is greater than 6.

The AWK one-liner is more efficient, more understandable because more

intuitive, and therefore more beautiful. On the other hand, however, one-

liners can be so condensed that they loose all sense of clarity for someone

who doesn’t have a deep knowledge in the specific language in which it is

written. Here is Conway’s game of life implemented in one line of APL:
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life ← {�1 � �.� 3 4 = +/ +� ¯1 0 1 �.� ¯1 0 1 �¨ ��}

The obscurity of such a line—due to its highly-unusual character notation,

and despite the pre-existing knowledge of the expected output—shows

why one-liners are usually highly discouraged for any sort of code which

needs to be worked on by other programmers. Cleverness in program-

ming indeed tends to be seen as a display of the relationship between

the programmer and the machine, rather than between different program-

mers, and only tangentially about the machine. On the other hand, though,

the nature of one-liners makes them highly portable and shareable, infus-

ing them with what one could call social beauty. Popular with early per-

sonal computer adopters, at a time during which the source code of pro-

grams were printed in hobbyist magazines and needed to be input by hand,

and during which the potential of computation wasn’t as widely distributed

amongst society, being able to type just one line in, say, a BASIC inter-

preter, and resulting in unexpected graphical patterns created a sense of

magic and wonder in first-time users—how can so little do so much?82.

Another example of beautiful code written by hackers is the UNIX operat-

ing system, whose inception was an informal side-project spearheaded by

Ken Thompson and Dennis Ritchie in the 1970s. As the first portable oper-

ating system, UNIX’s influence in modern computing was significant, e.g. in

showing the viability and efficiency of text-based processing, hierarchical

file-system, shell scripting and regular expressions, amongst others. UNIX

is also one of the few pieces of production software which has been care-

fully studied and documented by other developers. One of themost famous

examples is Lions’ Commentary on UNIX 6th Edition, with Source Code by

John Lions, an annotated edition of the UNIX source code, which was cir-

culated illegaly in classrooms for twenty years before its official publication

was authorized by the copyright owners[70]. Coming back to the relation-

82For an example fo such one-liner, see for instance: https://www.youtube.com/

watch?v=0yKwJJw6Abs

98



ship between architecture and software development, Christopher Alexan-

der asks, in the preface of Richard P. Gabriel’s Patterns of Software[44],

For a programmer, what is a comparable goal? What is the

Chartres of programming? What task is at a high enough level

to inspire people writing programs, to reach for the stars?

And UNIX might be one of the answers to that question, both by its func-

tionality, and by its conciseness, if not alone by its availability. Another

program which qualifies as beautiful hacker code, due both to its technical

excellence, unusual solution and open-source availability is the function to

compute the inverse square root of a number, a calculation that is particu-

larly necessary in any kind of rendering application (which heavily involves

vector arithmetic). It was found in the Quake source code, listed here ver-

batim83:

83The Quake developers aren’t the authors of that function, the merit of which goes to Greg

Walsh, but are very much the authors of the comments.
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float Q_rsqrt( float number )

{

long i;

float x2, y;

const float threehalfs = 1.5F;

x2 = number * 0.5F;

y = number;

i = * ( long * ) &y; // evil floating point bit level hacking

i = 0x5f3759df - ( i >> 1 ); // what the fuck?

y = * ( float * ) &i;

y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration

// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration,

// this can be removed

return y;

}

What we see here is indeed a combination of the understanding of the

problem domain (what’s the acceptable result I need to maintain a high-

framerate with complex graphics), and how the specific knowledge of com-

puters (i.e. bit-shifting of a float cast as an integer) and the snappiness

and wonder of the the comments (what the fuck? indeed). The use of 0

x5f3759df is what programmers call a magic number, a literal value whose

role in the code isn’t made clearer by a descriptive variable name. Usually

bad practice and highly-discouraged, the magic number here is exactly

that: it does makes the magic happen.

Further examples of such intimate knowledge of both the language and

the machine can be found in the works of the demoscene. Starting in Eu-

rope in the 1980s, demos were first short audio-visual programs which

were distributed along with crackware (pirated software), and to which

the names of the people having cracked the software were prepended,

in the form of a short animation[71]. Due to this very concrete constraint—
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there was only so much memory left on a pirated disk to fit such a demo—

programmers had to work with these limitations in order to produce the

most awe-inspiring effects. Indeed, one notable feature of the demoscene

is that the output should be as impressive as possible, as an immediate,

phenomenological appreciation of the code which could make this hap-

pen84. Indeed, the comp.sys.ibm.pc.demos news group states in their FAQ:

A Demo is a program that displays a sound, music, and light

show, usually in 3D. Demos are very fun to watch, because they

seemingly do things that aren’t possible on the machine they

were programmed on.

Essentially, demos ”show off”. They do so in usually one, two, or

all three of three following methods:

• They show off the computer’s hardware abilities (3D ob-

jects, multi-channel sound, etc.)

• They show off the creative abilities of the demo group

(artists, musicians)

• They show off the programmer’s abilities (fast 3D shaded

polygons, complex motion, etc.)[?]

This showing off, however, does not happen through immediate engage-

ment with the code from the reader’s part, but rather in the thorough ex-

planation of the minute functionalities of the demo by its writer. Because

of these constraints of size, the demos are usually written in C, openGL,

Assembly, or the native language of the targeted hardware. Source code

listings of demos also make extensive use of shortcuts and tricks, and lit-

tle attention is paid to whether or not other humans would directly read

the source—the only intended recipient is a very specific machine (e.g.

Commodore 64, Amiga VCS, etc.). The release of demos, usually in de-

84For an example, see Elevated, programmed by iq, for a total program size of 4 kilobytes:

https://www.youtube.com/watch?v=jB0vBmiTr6o
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moparties, are sometimes accompanied by documentation, write-ups or

presentations85. However, this presentation format acknowledges a kind

of individual, artistic feat, rather than the egoless programming lauded by

Brooks in professional software development86.

Pushing the boundaries of how much can be done in how little code, here

is a 256-bytes demo resulting in a minute-long music video[?] on the Com-

modore 64. It is firsted listed as a hexademical dump by its author:

0000000 0801 080d d3ff 329e 3232 0035 0000 4119

0000010 d01c dc00 0000 d011 0be0 3310 610e f590

0000020 0007 1fff 4114 24d5 2515 5315 6115 29d5

0000030 0f1b 13e6 13e6 02d0 20e6 61a9 1c85 20a7

0000040 3fe0 08f0 0c90 114e 6cd0 fffc 6da0 2284

0000050 d784 4b4a a81c 13a5 3029 02d0 1cc6 2fe0

0000060 11f0 02b0 02a2 10c9 09f0 298a aa03 f3b5

0000070 0a85 ab2d b000 b711 b622 9521 a500 4b13

0000080 aa0e f8cb cc86 0749 0b85 13a5 0f29 0fd0

0000090 b8a9 1447 0290 1485 0729 b5aa 85f7 a012

00000a0 b708 910d 880f f910 b7a8 9109 8803 f9d0

00000b0 7e4c 78ea 868e 8e02 d021 4420 a2e5 bdfd

00000c0 0802 0295 d0ca 8ef8 0315 cc4c a900 8d50

00000d0 d011 ad58 dc04 c3a0 1c0d 48d4 044b 30a0

00000e0 188c 71d0 e6cb 71cb 6acb 2005 58a0 d505

00000f0 cb91 dfd0 aa2b 6202 1800 2026 2412 1013

Even with knowledge of how hexadecimal instructions map to the instruc-

tion set of the specific chip of of the Commodore 64 (in this case, the SID

8580), the practical use of these instructions takes productive advantage

of ambivalence and side-effects. In the words of the author, Linus Akesson

(emphasis mine):

We need to tell the VIC chip to look for the video matrix at ad-

85You can find Elevated’s technical presentation here: https://www.iquilezles.org/

www/material/function2009/function2009.pdf
86In architecture, such technical and artistic feat for its own sake, devoid of any reliable

social use, is the pavillion, or the folly.
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dress $0c00 and the font at $0000. This is done by writing $30

into the bank register ($d018). But this will be done from within

the loop, as doing so allows us to use the value $30 for two

things. An important property of this particular bank configu-

ration is that the system stack page becomes part of the font

definition.

Demosceners therefore tend to write beautiful, deliberate code which is

hardly understandable by other programmers without explanation, and yet

hand-optimized for the machine. This presents a different perspective of

the relationship between aesthetics and understanding, in which aesthet-

ics do not support and enable understanding, but rather become a proof

of the mastery and skill required to input such a concise input for such an

overwhelming output. This shows in an extreme way that one does need

a degree of expert knowledge in order to appreciate it—in this sense, aes-

thetics in programming are shown to be almost often dependent on pre-

existing knowledge.

6.3 Hacking and elegance

This relationship that hackers establish between the complexity of a prob-

lem and the minimization of a problem brings up the criteria of elegance.

Elegance has both an abstract and a practical definition: its abstract defini-

tion relies on supposed synonyms, such as ”grace”, ”pleasantness”, ”style”,

in which the focus seems to be mainly on the surface, apparently easily

achieved. In terms of formal manifestations, then, elegance hints at re-

straint, at a minimal effort resulting in a noticeable result, for instance in

the works of Balzac and Proust[72] or when referring to the design and

conception of works in the high-fashion industry.

However, as we’ve seen throughout, form can provide a connection be-
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tween the surface, on which it belongs and manifests itself, and the depth.

From a more practical perspective, elegance is a concept that is often re-

ferred to in the so-called hard sciences, most notably mathematics, engi-

neering and design. Gian-Carlo Rota, in his work on mathematical beauty,

speaks to elegance in terms of how a mathematical proof is presented,

and which only tangentially relates to its content[73]. Elegance is about

the successive refinement of a proof after one has understood the con-

tents of the proof, and is related to beauty insofar as it reveals the beauty

of the proof, a beauty whose appreciation:

requires familiarity with a mathematical theory, which is arrived

at at the cost of time, effort, exercise, and Sitzfleisch rather than

by training in beauty appreciation.

It can nonetheless manifest in at least three different ways. Elegance can

be manifested in a simple notation, unusually concise or which requires

minimal assumptions and computations (minimality); it can be found in an

unconventional, intuitive, insightful or unifying presentation; finally, it is a

manner of communicating a deep structurewhich outlines an approach that

is highly generalizable (revelation). To these, Donald Kunth adds that ele-

gance can only appear if the elegant program is implemented in the most

suitable language, on the most suitable system[74].

These three approaches can be exemplified through the pieces of hacker

code which we’ve touched on above. A one-liner is a simple, unusually

concise notation, where the meaning and purpose of the action has been

condense to serve exactly its purpose, without extraneous decorations.

The example of the unexpected magic numbers and float to integer con-

version in the inverse square root, as well as the ambivalent uses of byte

code instructions in demoscene sources are both unexpected and uncon-

ventional at first, and yet prove to be the simplest solution to the problem

at the hands of the programmer. Finally, an approach that is highly gen-

eralizable is the one taken by the creators of UNIX—everything is a text
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file.

While simple solutions to complex problems are usually sought after, engi-

neering and systems design consider an elegant solution as the least com-

plex, sufficient solution[75]. Another dimension of elegance appears here:

it is not just about surface presentation, nor is it about unconventional, yet

intuitive approaches, but it is also dependent on sufficiency. That is, an

elegant solution has for necessary condition the efficiency in the face of

the problem posed. An elegant solution which doesn’t solve the problem

is neither elegant, nor a solution. This puts elegance back into the con-

text of the problem domain, implying that elegance varies with contexts

and requirements of a given program, written by a particular individual and

individuals, in a particular context[76].

Finally, Rota provides us for a reason for which elegance is a concept that

most agree exists, but few can straightforwardly define (perhaps in the

same category as Alexander’s Quality Without a Name), by looking at its

opposite:

Mathematicians seldom use the word ”ugly.” In its place are

such disparaging terms as ”clumsy,” ”awkward,” ”obscure,” ”re-

dundant,” and, inthe case of proofs, ”technical,” ”auxiliary,” and

”pointless.” But the most frequent expression of condemnation

is the rhetorical question, ”What is this good for?”

[...]

The mathematician who is baffled and asks ”What is this good

for?” is missing the sense of the statement that has been veri-

fied to be true. Verification alone does not give us a clue as to

the role of a statement within the theory; it does not explain the

relevance of the statement. In short, the logical truth of a state-

ment does not enlighten us as to the sense of the statement.

Enlightenment, not truth, is what the mathematician seekswhen

105



asking, ”What is this good for?”

Rota’s enlightenment seems to be similar to the use of the term under-

standing we’ve used so far to characterize the role of aesthetics as they

are manifested throughout program texts. In hacking specifically, under-

standing is that of the machine, of the language, and both of the problem

to be solved as well as the solution to be found. Elegant code, then, is code

whose formal notation is a testament to a thorough understanding of the

constraints at stake, to an enlightenment of the workings of the system;

of the implications of a deep, complex structure to be skillfully dealt with,

writing only what needs to be written.
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7 Conclusion

7.1 Summary of current research

I’ve outlined in this document additional aspects of the relationship be-

tween the aesthetics of source code, as formal, textual manifestations, and

the understanding of a program text, of which there are various kinds. To

do so, I’ve looked at conrecte practices as well as conceptual frameworks

to better qualify this relationship. In terms of practices, we’ve continued

our overview of the different groups of people who write code, by includ-

ing source code poets, hackers, and language designers—focusing slightly

more on differences rather than on overlaps.

Source code poets rely mostly on metaphors in order to communicate their

poeticmessage to the user. Narrowing down the broader field of computer-

aided literary works, from interactive fiction to generative poetry, we’ve

identified a subset of texts which focuses primarily on reading the source

code itself, rather than reading its output. These texts include obfuscated

code, as puzzle-like activities providing a twist on our understanding of the

output, static code poetry, in which the output of the program only matters

insofar as it is legal by the compiler or interpreter’s rules, and active code

poetry, where the output of the program, while secondary to the reading

of the source, nonetheless provides additional understanding with regards

to the poetics of the discourse.

To elicit such an effect, they seem to build on an extended definition of the

metaphor. Particularly, we’ve seen the role that literary theory and con-

temporary definitions ofmetaphor can playwhen it comes to understanding

programs, extending it from a strict literary perspective of themetaphor to a

broader one. Through the lens of Lakoff’s work, we’ve defined themetaphor

as a linguistic device activating conventional conceptual structures which
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we all hold. With Ricoeur’s work on the metaphor, we’ve extended it from

the strict locus of the word to that of the sentence, an extension which al-

lows us to consider both the source and the execution of the program text

as a whole metaphorical entity. In turn, the workings of these metaphorical

entitities can be better understood by the concepts of double-meaning,

double-coding and procedural rhetoric, providing a framework to analyze

such texts and how their meaning is conveyed through semantic compres-

sion and dynamic processes.

In the vein of how recent literary studies have focused on the cognitive pro-

cesses at play during reading, we’ve seen that reading program texts does

not depend exclusively on the language function of the brain, even though

the textual interface of those texts does provide a perspective on the con-

nections between a surface-structure and a deep-structure. Therefore, an

exclusively literary framework isn’t sufficient in providing means to under-

stand how aesthetics aremanifested in the process of either understanding

source code, or making source code understandable.

We then turned to another field often applied to software development:

architecture. From a traditional standpoint, software architecture is con-

cerned with the high-level organization of code as a purely functional en-

tity, highlighting a top-down approach to structure, with little concern with

implementation details. Based on this functional approach, we highlighted

the limits of the form follows function dogma, noting that superficial beauty

isn’t the only way to appreciate the quality of a construction. Looking at

another popular connection between architecture and software developed

by Christopher Alexander, patterns offer another productive perspective,

one which highlights habitability as the principal feature of a good struc-

ture, whether material or computational, and manifested through concrete,

material instances.

This inquiry then led us to one of the materials of code: programming

languages—the material being data and hardware. Programming language
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theory and research further refined our understanding of the different con-

texts in which source code exists, from the strict syntactical linguistic con-

struct to the broader problem domain, the work of the programmer being

to reconcile both. We’ve also seen that some programming languages can

be considered better than others, based in part on the critera of abstrac-

tion and orthogonality, and therefore provide a context and a pattern lan-

guage in and of themselves. As such, they aim at providing visual patterns

of semantic significance Changing our perspective on the topic of under-

standing, we’ve also seen that semantics in computer terms are rather im-

plemented as secondary syntaxes, and therefore that some ways through

which computers can consider code ”easy to understand” is through mem-

ory and parse-tree optimizations.

It is this sort of machine-oriented beauty which hackers engage in. The

practices of such a group tend to focus more on the understanding of the

computer (often of a very specific physical or syntactic computer). In some

cases, this results in the provision of an enabling context to their read-

ers, shown through one-liners and large-scale open-source projects, where

simplicity, clarity and conciseness are the main goals; in other cases, rather

than enabling such an understanding in their readers, it focuses on the ex-

actness and technical prowess of the code they write, with output as the

proof of their precise understanding of the machine they are working with.

This led us to examine the notion of elegance in the context of source code,

defined as the simplest solution given a certain problem domain. This prob-

lem domain acts as a specific context, and takes into account the goal to

reach, the means to do so, and the readership of the code, whether it is

writing a writerly text[77] which can be inhabited by other programmers,

writing a poetic piece fully utilizing the expressivemeans of the formal sym-

bol systems which programming languages are, or demonstrating mastery

over those systems.

This leads us to sketch out the beginning of an answer to our research
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question: aesthetics in software are about manifesting contextual relation-

ships between surface-structures and deep-structures, these structures

being themselves conceptual (metaphors or intents) or computational, and

highly contextual.

7.2 Suggestions for next steps

From there on, I identifiy several directions for further research in order to

further elaborate on this hypothesis.

First, I intend to present and analyze additional program texts, from, the

different communities identified, from source code poetry to production

code and ”hacker code”. Particularly, I would like to look at a larger code-

base, such as UNIX or LaTex, to potentially identify some aesthetic features

in these.

Second, the section on hackers needs to be deepened, in terms of how

hackers indirectly influence other communities, in terms of how one-liners

and syntactically compressed code straddle the line between understand-

ing and obfuscation, and whether or not these are just two sides of the

same cognitive coin. Additionally, I intend to examine further the parallels

between architecture and hacking, particularly by looking at what architec-

tural follies and pavillions have to tell us about the relationship of technical

skill, usability and beauty.

Third, I want to conduct a deeper analysis on the aesthetics of theoret-

ical computer science, by analyzing corpora of textbooks and academic

research, by highlighting further the relationship between a theoretical un-

derstanding of computation and a hacker practice, and by more rigorously

examining to what extent aesthetics might or might not matter to computer

systems.

On the programming language side, I see three additional directions. I

would map out more clearly the framework provided by Goodman’s Lan-
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guages of Art onto the semantic affordances of programming languages.

Building on elegance as a tool for mathematical and scientific understand-

ing, I would further highlight the role of style in programming, specifically

from Gilles-Gaston Granger’s perspective. Finally, I would also further in-

vestigate to what extent programming languages themselves can be con-

sidered textual/semantic patterns in themselves, or if they only afford se-

mantic patterns in source code, or both.
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