
The Aesthetics of Source Code - Pierre Depaz

Further definition of topic and future outline of work - 

08.2020

Aesthetics and understanding

At the beginnning of the Spring semester 2020, I had established a clear 

research direction, directed at what role aesthetics have in the process of 

understanding source code. While the definition of aesthetics upon which 

this research relies is based on aesthetics as a physical manifestation which 

can be grasped by the senses. The limitation of this starting point is justified

mainly by the object of this study: as an object, rather than as a concept. By 

approaching source code as an object (specifically, as multiplicity of objects,

“texts” written and read), rather than as a concept, I therefore put its 

immediately graspable aspects in the foreground. While the social, cultural, 

intellectual and emotional components are still significant in the 

appreciation of beauty in source code, the comparative lack of close 

examination of how code is written is the justification for such a definition 

of aesthetics. In the following, the adjective “beautiful” when qualifying 

code will mean “code which presents aesthetic qualities”.

What still needed to be defined, however, are two things: a first set of 

criteria of how “beautiful” source code should look like, and their 

relationship to “understanding”. The work conducted this semester has 

therefore focused on the gathering and examination of the corpus of source 

code texts, along with their accompanying explanations, justifications and 

overall meta-texts, in order to find out how are references to “beauty” and 

“understanding” made. Amongst the vast majority of the corpus elements, 

practicioners tend to present or discuss a piece of source code which they 

consider “beautiful”, “aesthetically pleasing”, and accompany this 



presentation with justifications about how to make a piece of code beautiful 

and/or why make a piece of code beautiful. It is these discourses that are 

used to elaborate on what source code aesthetics look like in practice, as 

well as what kind of role they play in the life of source code text.

This process has led to the constitution of an initial set of aesthetic 

properties that are repeatedly highlighted by a certain sub-set of 

practictioners. In effect, the group of those who write and read source code 

is far from being homogeneous, and can actually be grouped into distinct 

categories with distinct practices and standards1. While additional sources 

establish their own distinctions234, the multiplicity of contexts within which 

code is written leaves litte doubt. Leaving aside for now a thorough 

defintion of each of these, I’ve identified four main categories of individuals 

writing and reading source code, which I group under the umbrella term 

code practicioners. These categories include: software engineer, academic, 

hacker and artist. These categories intend to provide heuristics, rather than

strict definitions, and each of these categories can overlap within one 

individual or group of individuals.

The sub-sets of practicioners examined so far include software engineers 

and artists—and thanks to the aforementioned overlap of categories, I am 

making the hypothesis that the initial findings made through the 

comparison of how aesthetics are conceived of by engineers and artists will 

be reinforced and further qualified during the examination of how the 

remaining categories (academics and hackers)5.

1 https://www.americanscientist.org/article/cultures-of-code

2 https://josephg.com/blog/3-tribes/

3 https://blog.codinghorror.com/the-two-types-of-programmers/

4 https://mkdev.me/en/posts/the-three-types-of-programmers

5 these categories match what Wittgenstein has called forms of life: socio-
cultural contexts of use, underpinned by normative activities (e.g. technical 
writing)



Established software engineering practices

The vast majority of code written today has been done by software 

engineers. While not the only group of people to write and read code, they 

are by far the most significant. The appearance of the profession in the late 

1950s and early 1960s, emerging from a purely academic or military 

activity, brought with it a change in discourses relating to how code should 

be written, most eloquently by E. W. Djikstra 6, along with Knuth 7, 

Kernighan 8 and Martin 9 amongst others. Since these earlier texts focused 

on defining the practice of software development at a professional level, the

inclusion from the get-go of an artistic component (“The Art of 

Programming”), as well as a cognitive one (“GOTO Statement Considered 

Harmful”) is a significant indicator that writing software isn’t an exclusively

mechanical activity. However, while claiming in its introduction that writing

code is an art, The Art of Programming doesn’t address what exactly it is 

that makes writing code an artistic process and source code a beautiful 

object, and therefore leaves room for the following investigation. Following 

Knuth’s claim, this question of “beautiful code” has been addressed by 

members of the profession itself, at various levels: a couple of 

monographs1011, conferences, academic articles, blog posts and Q&A 

websites.

6 Dijkstra, Edsger W., Chapter I: Notes on structured programming. 
Structured programming. Academic Press Ltd., GBR, 1–82. 1972.

7 Knuth, Donald, The Art of Programming, Vol. 1, Addison-Wesley, 2001.

8 Kernighan, Brian W. and Plauger, P. J., Elements of Programming Style, 
McGraw-Hill, 1978.

9 Martin, Robert C., Clean Code, Pearson, 2008.

10 Oram, Andy and Wilson, Greg (ed.), Beautiful Code: Leading 
Programmers Explain How They Think, O’Reilly Media, 2007.

11 Chandra, Vikram, Geek Sublime, Graywolf Press, 2014.



The analysis of this corpus has led to mulitple insights for this research 

project: qualifying the purpose of aesthetics for software practicioners, 

establishing an aesthetic framework and providing further insight into the 

relationship between aesthetics and understanding.

First, it has helped anchor further what role aesthetics play for one of the 

categories of software practitioners. These findings complement the 

statements by more leading figures among software development, and 

confirm, or qualify the statements of said figures. Particularly, it has 

highlighted that, while aesthetics are important in any source code, they are

often difficult to achieve and are always secondary to the functionality of 

the program (i.e. does it actually work?). Any presence of aesthetic features 

should not be there for their own sake, but rather contribute to a particular 

goal: that of facilitating the communication of the writer’s mental model of 

the problem.

Second, it has allowed me to constitute a significant part a set of features of

beautiful code. When offering their opinion on the oft-repeated topic of 

beautiful code, the comments and explanations of code in the corpus do not 

contain uni-dimensional criteria, but rather criteria which can be applied at 

multiple levels of reading. Some of those tend to relate more to the over-

arching design of the code examined while others, closer to our working 

definition of aesthetics, focus on the specific formal features exhibited by a 

piece of source code. This variety of criteria led me to base the framework 

of aesthetic criteria on John Cayley’s distinction between structures, 

syntaxes and vocabularies12. Cayley’s framework allows me to take into 

account an essential aspect of code: that of scales at which aesthetic 

judgment operates. Additionally, it also provides a bridge with literature 

and literary studies without imposing too rigid of a grid. While it does not 

immediately acknowledge more traditional literary concepts such as fiction, 

12 Cayley, John, The Code Is Not The Text (Unless It Is The Text), Electronic 
Book Review (ebr), 2002.



authorship, literarity, etc., it does leave room for these concepts to be taken

into account. Particularly, we’ll see that the concept of authorship (who 

writes to whom) will be useful in the future.

Third, the analysis has refined the relationship between “aesthetics” and 

“understanding”. The necessity for code to be understood, the desire for 

code to be beautiful and the desire for code to be functional are often 

intertwined and highlight how the first hints at the realization of both 

clarity and functionality. This idea that “something which is beautiful is 

something which works” is a central one in Nelson Goodman’s work13, and 

this work serves as a theoretical backbone for the analysis of our object of 

research. However, even though this relationship between beauty, clarity 

and functionality seems to be an argument in support of aesthetics as a 

means of efficiently communicating concepts, it will become clear that, in 

the case of source code, that there are multiple (and sometimes conflicting) 

aesthetic criteria across software practicioners. The hypothesis here is that 

it is due to the fact that the concepts that are being communicated are 

themselves plural in nature (immediate function, theoretical illustration, 

unique skill and artistic cosmogony).

In the next section, I move to further explain the perceived relationship 

between beauty and code among software practicioners.

The role of beauty in code

“Aesthetics alleviate cognitive pain”14. This excerpt from The Art of 

Readable Code, presented as an industry manual for professional software 

developers, sums up the overall sentiment of software developers as 

surveyed through my corpus analysis. While most code can be understood, 

13 Goodman, Nelson, Languages of Art, Hackett Publishing Company, Inc., 
1976.

14 Boswell, Dustin, The Art of Readable Code: Simple and Practical 
Techniques for Writing Better Code, O’Reilly Media, 2011.



sometimes after considerable effort, beautiful code supposedly bypasses any

need for additional explanation, reaching a highly sought-after status of 

“self-explanatory”. This status for aesthetics to ease understanding of the 

text also answers one of the early research questions of this thesis 

regarding the necessity for code to be beautiful in the first place. While the 

existence of beautiful code quickly manifested itself at the beginning of this 

research, two questions then seemed to arise due to its close connection to 

complexity, intelligibility and understandability.

First, what and how do aesthetics in code make intelligible? What is made 

intelligible isn’t exclusively what the program does, but can also refer to the

knowledge of an existing algorithm, a given idiomacy in a programming 

language, an architecture of hardware, a practice of reading and writing of 

fellow programmers or a certain conception of the world. That is, what 

should be made intelligible is both an intent and a mental model, within a 

particular socio-technical context composed at least of a writer, a reader, a 

language and a hardware. How it makes such an action understandable is 

addressed in the following section, in which I sketch out a typology of 

aesthetic criteria, before highlighting how some of these criteria can denote

different intents and mental models.

Second, do aesthetics in any kind of code always aim at making intelligible? 

That is, is the aesthetic in the code exclusively transitive, relating to 

something other than itself, or intransitive, referring only to itself? This 

opens up a further discussion on whether or not functionality is an essential

part of aesthetics (i.e. “beauty that you can use”15), and to what extent there

are contexts and mediums in which beauty can exist without an external 

aim.

15 Oram, Andy and Wilson, Greg, op. cit.



There thus seems to be a necessity for beauty: since programming is an 

inherently complex activity16, dealing with abstract concepts, and dealing 

with them as raw materials, an aesthetically pleasant piece of source code 

is therefore an easily-understandable one, enabling the development of 

mental models17 in the reader, mainly through the process of visual, 

syntactical and semantic metaphors, connecting immediate sensual 

manifestations to abstract, shared ideas18. These metaphors arise from 

particular constraints which writers of code face. The issue here is to 

communicate what the program is (as a conjunction of what a program 

does, how a program does it and why it does so). This essence of the code is

based on the writer-programmer’s mental model of the problem at hand, 

and aimed at the reader-programmer, and this communication happens a 

highly-restricted symbolic language; theoretically able to compute any finite

problem, while at the same time limited in practice to instruction sets and 

syntax which doesn’t adequately cover the need for expressing the intent of 

the work.

Source code thus needs to communicate something beyond itself. This can 

be what the code does, how and why it does it, and how it approaches the 

problem domain. The object, the manner and the context are what the 

reader focuses on, and not aesthetics features in themselves; that is, if the 

code were to be written differently, it would not ultimately harm the 

purpose of reading it (even though it would still make the process of doing 

so more cumbersome).

However, one of the reasons for which a code-text exists and which relies 

first and foremost on aesthetics is the skill of a given writer. Just because a 

significant part of code can be considered a semantic interface which 

16 Dijkstra, Edsger W., Craftsman or Scientist? retrieved from University of 
Texas

17 Forrester, Jay Wright, World Dynamics, Wright-Allen Press, 1971.

18 Goodman, op. cit.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD480.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD480.html


should ultimately become as invisible as possible19 (self-explanatory, it 

allows the reader to get directly to the problem, without stumbling on the 

syntax), the aesthetic nature of a code-text is considered by most 

practicioners as a testament to the skill of a writer.

Before we move on to a more detailed analysis of what makes source code 

aesthetically pleasing in the following section, I would like to point out a 

recurring reference made by practicioners regarding the general heuristic 

of writing beautiful code. Elegance, always loosely defined, is seen as doing

the least with the most; as the number of lines of code diminish, each of 

them become more and more essential20. Throughout the corpus analysis, 

various references to Antoine de Saint-Éxupéry’s quote appear regularly: 

“Perfection is achieved, not when there is nothing more to add, but when 

there is nothing left to take away.”. Beyond highlighting a desire for a 

literary connection, this citation also hints at the iterative process of writing

code: adding, then removing.

Such a process is echoed in the practices of craftsmanship, rather than 

scientific approach. Indeed, several21 authors22 have alluded at 

programming as a craft23, but haven’t focused specifically on the parallels in

form. It thus seems necessary not to oversee that connection, and to ask 

what are the relationships between the aesthetic criteria of craftsmanship 

the aesthetic criteria of source code?. Some of these criteria include clarity, 

mastery, cooperativity and utility and constitute an additional axis of 

research. An early paradox in this relationship concerns the aim of the code 

itself, the criteria of mastery excludes, for some, any code-text which 

19 Galloway, Alexander, The Interface Effect, Polity, 2012.

20 Nabokov, Vladimir, Lectures on Literature, Mariner Books, 2002.

21 Sennett, Richard, The Craftsman, Yale University Press, 2009.

22 Dijkstra, craftsman vs. scientist

23 Software Craftsmanship



doesn’t solve an interesting problem (e.g. “a user-login form cannot be 

beautiful”). Craftsmanship would allow for mundane uses to be the vehicle 

of aesthetic manifestation (e.g. a chair, an illustration), but the field of 

computation within which code evolves gives the possibility of always 

pointing towards bigger, newer computing problems which can be 

addressed. In terms of resemblance, though, both craftsmen and software 

developers abide by deeply-engrained, bottom-down mottos and heuristics 

such as DRY (Do Not Repeat Yourself), KISS (Keep It Simple, Stupid) and 

SOLID24, which act as essential guideline for writing software in a 

professional context and underpin, as we will see, all other aesthetic 

standards in this community of practicioners.

Aesthetic criteria

As mentioned above, the corpus of textbooks, essays, online blog posts and 

comments addressing what makes source code beautiful or aesthetically 

pleasing has been analyzed according to three main categories: structure, 

syntax and vocabulary, as all related to formal manifestations in source 

code, both functioning at different scales. Structure is defined by the 

relative location of a particular statement within the broader context of the 

code-text, as well as the groupings of particular statements in relation to 

each other and in relation to the other groups of statements within the 

code-text. This also includes questions of formatting, indenting and linting 

as purely pattern-based formal arrangements. Syntax is defined by the local 

arrangement of tokens within a statement, including control-flow 

statements (and therefore not restricted to single-line statements). It also 

includes language-specific choices, referred to as idioms, and generally the 

type of statements needed to best represent the task required (e.g. using an

Array or a struct as a particular data structure for a collection of things). 

Finally, the vocabulary refers to the user-defined elements of the source 

24 single responsibility of classes, open/close principle, liskov substitution, 
interface segregation, dependency inversion



code, in the form of variables, functions, classes and interfaces. Unlike the 

two precedent categories, this is the only where the writer can come up 

with new tokens, and is the closest to metaphors in traditional literature.

 Structure

Structure, as the highest-level group of criteria, is both easy to grasp and 

somewhat superficial: most of the criteria which compose it are indicators 

and not proof of beautiful code, indeed necessary, but not sufficient. 

Structure itself can be further separated between surface-structure, and 

deep-structure. The criteria for beauty in surface-structure is layout, as the 

spatial organization of statements, through the use of line breaks and 

indentations. While serving additional ends towards understanding, proper 

layout (whether according to conventions, or deliberately positioning 

themselves against these conventions) seems to be the first requirement for 

beautiful code. In terms of aiding understanding, blank space creates 

semantic groupings which enable the reader to grasp, at a glance, what are 

the decisive moments25 in the code’s execution, and presented by some as 

akin to paragraphs in litterature26. Any cursory reading of source code 

always first and foremost judges layout.

This aid to understanding is further highlighted by a deep-structure criteria 

of conceptual distancing: statements that have to do with each other are 

located close to each other. As such, visual appearance reflects the 

conceptual structure of the code (and, indeed, some argue that the data 

which the code processes predates the code itself in dictating its layout). 

While an over-arching principle, it is vague enough to be open to 

interpretation by practitioners and is therefore unable to act as a strict 

normative criteria (e.g. should every code-text follow the stepdown rule of 

function declaration or alphabetical rule of function declaration when 
25 Sennett, Richard, op. cit.

26 Matsumoto, Yukihiro, Treating Code As An Essay, in Beautiful Code, op. 
cit.



writing in a language which doesn’t enforce it? should local variables all be 

declared at the beginning of the highest scope at which they belong, or at 

the closest location of their next use? should all data be prepared, and then 

processed, or should each data be prepared and processed in each of their 

contexts?).

The related criteria of local coherence (what is next to each other is related 

to each other) echoes similar questions about the coherence and 

consistence in Goodman’s aesthetic theory27. Local coherence enables what 

Goodman calls semantic density, in which tokens grouped together obtain a 

greater denotative power. Local coherence seems at first to stand at odds 

with the undesirable but unavoidable entanglement of code. Indeed, 

proponents of local coherence in source code imply that a beautiful piece of 

code should not have to rely on input and output (i.e. not be entangled) and 

therefore be entirely autotelic. Such an assumption runs contrary to the 

reality of software development as a practice, and as an object embedded in

the world, and thus not “usable” by software developers. Such an isolated 

approach to code doesn’t match the claims above that code should be 

useful, and so is probably intended to be understood in a more flexible 

manner (see in vocabulary below: function arguments).

A correlate to conceptual distancing is conceptual symmetry, which states

that groups of statement which do the same thing should look the same. It 

then becomes possible to catch a glimpse of patterns, in which readers 

know what does what according to a brief overview. Conceptual distancing 

can be further improved by conceptual uniqueness (unicity?), which 

demands that all the statements that are grouped together only refer to one

single action: complex enough to be useful, and simple enough to be 

graspable (possibly the start of a definition of elegance). Following this, 

then, beautiful code is “the code that does the job while using the least 

amount of different ideas”, which, according to the DRY principle, implies a 

27 Goodman, Nelson, op. cit.



linear relationship between the number of lines of code and the amount to 

be understood. This is possibly an aesthetic standard, but it is unclear to 

what extent it is a sublime standard.

Interestingly, this last statement contradicts another aesthetic that exists 

among different software practicioners—hackers. In their case, beautiful 

code is the code which manages to pack the maximum number of ideas in a 

minimal amount of lines of code, both in obfuscation practices and in the 

writing of one-liners. This apparent conflict between clarity and complexity 

can be resolved in certain codebases, in which the lines of code are few, but

the implications are many28.

 Syntax

Syntax, as the mid-level group of criteria, deals most specifically with the 

two main components of the implementation: the algorithm and the 

programming language. Beautiful syntax seems to denote a conceptual 

understanding of the tools at hands to solve a particular problem (Knuth 

states that these understandings are the ones that make writing code an 

art, and has devoted his magnum opus to the study and communication of 

algorithms). Both algorithms and languages are seen as tools since, again, it

is through its use and implementation that a piece of code is considered 

functional, and can thus be examined for aesthetic purposes. Due to this 

need for implementation, I will argue that algorithms exist independently 

from languages, but that their aesthetic value in the context of this research

cannot be separated from the way they are written, and the language they 

are written in. Indeed, most algorithms are expressed first as pseudo-code 

and then implemented in the language that is most suited to a variety of 

factors (speed, familiarity of the author, suitability of the syntax); this seems

to be a contemporary version of the 1950s, when computer scientists would 

28 for instance, forkbomb.pl, or the lisp interpreter



devise those algorithms through pencil and paper, and then leave their 

implementation at the hands of entirely different individuals—computers.

Beautiful syntax in code responds to this limitation. Since algorithms must 

be implemented in a certain context, with a certain language, it is the task 

of the writer to best do so with respect to the language that she is currently 

working in. In this case, knowledge of the language-as-tool and its relevant 

application makes beautiful syntax an idiomatic syntax. This involves 

knowing the possibilities that a given language offers and, in the spirit of 

the craftsmanship ethos noted previously, working with the language rather

than against it. These sets of aesthetic criteria thus become entirely 

dependent on the syntactical context of the language itself, and can only be 

established with regards to each languages (e.g. knowing which keywords 

shouldn’t be used, such as unless in perl, or * in C, knowing when to use 

decorators in python, the spread ... operator in ECMAScript, etc.). Here, 

syntax also follows the idea of conciseness that has been touched upon at 

the structure-level: a writer can only be concise if she knows how the 

language enables her to be concise, and knowing the algorithm and the 

problem domain will not help to match this criteria. To what extent a syntax

is idiomatic syntax is therefore a good indicator of the aesthetic value of a 

code-text, while refraining from being too idiomatic (often referred to as 

“clever code” and generally frowned upon).

It is difficult to establish a hierarchy between separate idioms, since they 

operate under different paradigms and assumptions. A developer who finds 

that she can best communicate her ideas according to Java will find Java 

beautiful. A developer who finds that she can best communicate her ideas 

while writing in Go will find Go beautiful. This state of affairs seems to be 

part of the reason as to why online platforms are full of “which language is 

better?” endless discussions. A syntactical criteria which acts as a response 

to these discusssions is consistency. While there might be specific reasons 

as to why one would want to be writing code one way or another 



(e.g. calling functions on objects rather than calling functions from objects 

in order to prevent output arguments), this minor increase in aesthetic 

value—through display of skill and personal knowledge— doesn’t 

compensate for the possible increase in cognitive noise if those different 

ways of writing are used alternatively in an arbitrary manner. In this 

context, consistency prevails over efficacy, and nonetheless hints at the fact

that aesthetics in source code in this context is a game of tradeoffs.

Beyond the state of syntactic consistency, the question of linguistic 

reference, bringing heuristics from one language to another is yet another 

aesthetic criteria. Being able to implicitly reference another language in a 

code-text (e.g. “this is how we do it now that we have C++, but the current 

code is written in C, so one can bring in ideas and syntax that are native to 

C++” or “since Ruby can qualify as a Lisp-like language, one can write 

lambda functions in an otherwise object-oriented language”), a code-

switching of sorts, can both communicate a deep understanding of not just a

language, but an ecosystem of languages while satisfying the purpose of 

maintaining clarity, assuming a certain skill level in the reader. This 

communicates a feeling of higher-understanding, akin to perceiving all 

programming languages as ultimately just “tools for the job” and whose 

purpose is always to get a concept across minds as fully and clearly as 

possible. However, a misguided intention of switching between two 

languages, or a mis-handled implementation can propel a code-text further 

down the gradient of ugliness. The concept communicated would in such a 

case be obscured by the conflicting idioms (e.g. writing p5.js—as a 

JavaScript implementation of a Java-based syntax—within an HTML 

document forces the co-existence of two distinct syntaxes which are made 

to cohabit more for purposes of platform-distribution rather than code 

clarity), reveal of lack of mastery of the unique aspects of the working 

language(s), and therefore fail to fulfill the aesthetic criterion of 

idiomaticity.



Finally, a syntax with high aesthetic value is a syntax which favors natural 

language reading flow. For instance, of the two alternatives in Ruby: 

if people.include? person vs. if person.in? people, the second one is 

going to be considered more beautiful than the first one, since it adapts to 

the reader’s habit of reading human languages. However, the essential 

succintness and clarity of source code is not to be sacrificed for the sake of 

human-like reading qualities, such as when writers tend to be overly explicit

in their writing. Indeed, a criteria for ugliness in code-text is verbosity, or 

useless addition of statements without equivalent addition of functionality. 

This testifies to the need for a balance between machine idioms over 

human idioms, with the sweet spot seemingly being the point at which 

machine idioms are presented as human-readable.

 Vocabulary

Vocabulary, as the only component in this framework which involves words 

that can be (almost) entirely invented by the writers, is often the most 

looked at in the literature regarding beautiful code among professional 

software developers. Aesthetics here deal mostly with beautiful names, and 

respect for conventional knowledge. It is the level of aesthetic standards 

which takes into account first and foremost the readership of a given code-

text.

Of the two big problems of programming, the most frequent one is 

naming29. One reason as to why that is might be that naming (as language) 

is an inherently social activity30 and therefore a name is an utterance which 

only makes sense when done in the expectation of someone else’s 

comprehension of that name. This is supported by the fact that the process 

of creating a variable or function name on one’s own is often more time-

29 (attributed to Phil Karlton), link

30 Volosinov, V. N., Marxism and Philosophy of Language, Harvard 
University Press, 1986.

http://karlton.hamilton.com/quotes/index.cgi


consuming when done alone31, as reported by developers. Naming, 

furthermore, aims not just at describing, but at capturing the essence of an 

object, or of a concept. This is a process that is already familiar in literary 

studies, particularly in the role of poetry in naming the elusive. For 

instance, Vilém Flusser sees poetry as the briging-forth that which is 

conceivable but not yet speakable through its essence in order to make it 

speakable through prose32, using the process of naming through poetry in 

order to allow for its use and function in prose. In this light, good, efficient 

and beautiful names in code are those who can communicate the essence of 

the concept that is being communicated (or parts thereof).

On a purely sensory level (visual and auditory), surface-level aesthetic 

criteria related to naming are that of character length and 

pronounceability. Visually, character length can indicate the relative 

importance of a named concept within the greater structure of the code-

text. Variables with longer names are variables that are more important, 

demand more cognitive attention, offer greater intelligibility in comparison 

with shorter variable names, which only need to be “stored in memory” of 

the reader for a smaller amount of time. These visual cues, again, alleviate 

cognitive pain when trying to understand code, and therefore hold greater 

aesthetic value when respected. Pronounceability, meanwhile, take into 

account the basic human action of “speaking into one’s head” and therefore 

participates in the requirement for communicability of source code amongst

human readers. Similar to proper indentation and typographic consistency 

(see above), this particular criterion exists in the category of aesthetic 

criteria which are required, but not sufficient, for beautiful code.

Equally visual, but aesthetically pleasing for typographical reasons, is the 

casing of names. Dealing with the constraint that variable names cannot 

31 Particularly, it is interesting to note that functions are easier to name 
than variables.

32 Flusser, Vilém, On Doubt, Univocal Publishing, 2015.



have whitespace characters as part of them, casing has resulted into the 

establishment of conventions which pre-exists the precise understanding of 

what a word denotes, by first bringing that word into a category (all-caps 

denotes a constant, camelCasing denotes a multi-word variable and first-

capitalized words indicate classes or interfaces. By using multiple cues 

(here, typographical, then semantical, as explicited below), casing again 

helps with understandability. Furthermore, casing, by its existence as a 

convention, implies that it exists within a social community of writers and 

readers, and acknowledges the mutual belonging of both writer and reader 

to such a community, and turns the code-text from a readerly text further 

into a writerly one33.

Following these visual, auditory and typographical criteria, an aesthetically-

pleasing vocabulary is a vocabulary which strictly names functions as 

verbs and variables as nouns. In the vein of making a correspondance 

between machine language and human language, there is here a clear 

mapping between the two: functions do things and variables are things. If 

it’s the other way around, while respecting the criteria for consistency, 

functions as nouns and variables as verbs hints at what it is not, are 

counter-intuitive and ultimately confusing—confusion which brings ugliness.

The noun given to a variable should be a hint towards the concept 

addressed, and ideally address what it is, how it is used, and why it is 

present. Each of these three aims aren’t necessarily easily achieved at the 

same time, but finding one word which, through multiple means, points to 

the same end, is an aesthetic goal of source code writers. Particularly, 

limiting the naming to be the answer to only one of those questions (only 

what, only what, or only why) could potentially confuse the reader more 

than it would enlighten her. A beautiful name is a name which differentiates

between value (obvious, decontextualized, and therefore unhelpful, as seen 

by the general frowning-upon of using magic numbers) and intention, 

33 Barthes, Roland, Le Plaisir Du Texte, Seuil, 1973.



informing the reader not just about the current use, but also about future 

possible use, in code that is written or yet to be written. We see here a 

paradox between direct conceptual relationship between a name and what 

it denotes, and the multiple meanings that it embodies (its description, its 

desired immediate behaviour, and its purpose). Such a paradox is however 

overcome in the community of code poets.

While, in the community of software developers, variable names should then

have a 1:1 mapping with the object or concept they denote, this isn’t the 

case in other communities, whether those that rely on obfuscation, in which 

confusion becomes beautiful, or in poetic code, in which double-meaning 

brings an additional, different understanding which ultimately enriches the 

complexity of the reading34. Indeed, it is the easiest way for writers to offer 

metaphors, and provides an entry point in to the possibility that all source 

code is itself a practical metaphor for the task—and therefore the problem—

at hand. This aesthetic criteria of double-meaning comes from poetry in 

human languages, in which layered meanings are aesthetically pleasing, 

because they point to the un-utterable, and as such, perhaps, the sublime. 

The way that this community (code poets and artists) address the aesthetic 

problem of naming and, more generally, how source code and literature 

make use of metaphors, is part of the next steps that will be taken in this 

research.

A final aesthetic criterion for vocabularies is the limitation of function 

arguments, according to which arguments given to a function should be 

either few, or grouped under another name. Going back to the structural 

criterion above of limiting input/output and keeping groups of statements 

conceputally independent, function arguments solves this requirement at 

the level of vocabulary, demonstrating in passing the relative porosity of 

those categories. Indeed, the naming of variables also reveals the pick of 

34 Knuth, Donald, Literate Programming (Lecture Notes), Center for the 
Study of Language and Inf, 1992.



adequate data-structures, echoing those who claim that the data on 

which the code operates can never be ignored, and that beautiful code is 

code which takes into account that data and communicates it, and its 

mutations, in the clearest, most intelligible, possible way.

 Comments

Comments in code do not seem to fall clearly in any of the three categories 

above. By definition ignored by the compiler/interpreter, comments can be 

erroneous statements which will persist in an otherwise functional 

codebase, and are therefore not trusted by experienced, professional 

software practicioners. In this configuration, comments seem to exist as a 

compensation for a lack of functional aesthetic exchange. By functional 

aesthetic exchange I mean an exchange in which a skilled writer is able to 

be understood by a skilled reader with regards to what is being done and 

how. If any of these conditions fail (the writer isn’t skilled enough and relies

on comments to explain what is going on and how it is happening, or the 

reader isn’t skilled enough to understand it without comments), then 

comments are here to remedy to that failure, and therefore are an indicator 

(but, again, not a proof) of non-beautiful code. For instance, referencing a 

variable name in a comment is a sure indicator of a message which refers to

the what/how of a group of statements and is on the verge of stating the 

obvious (if not already stating the obivous).

The situation in which comments seem to be tolerated is when they provide 

contextual information, therefore (re-)anchoring the code in a broader 

world. For instance, this is achieved by offering an indication as to why such

an action is being taken at a particular moment of the code, called 

contractual comments, pointing at the social existence of source code. This 

particular use of comments seems to bypass the aesthetic criteria of code 

being self-explanatory, but nonetheless integrates the criteria of code being 

writable, a piece of code which, by its appearance, invites the reader to 



contribute to it, to modify it. As such, in an educational setting (from a 

classroom to an open-source project), comments are welcome, but rarely 

quoted as criteria for beautiful code, which seems to indicate that the 

appreciation of beautiful code does require a certain level of skill.

Aesthetics as a purposeful, functioning device

This set of criteria is only the first of multiple (including those of artists, 

hackers and academics), and is intended to be limited to the community of 

practicioners it stems from, as well as inform a consolidated set of 

principles which could possibly apply to any piece of source code. While the 

content of the framework seems to apply in a broad to any commentary on 

source code found in the gathered corpus of software developers, its 

organization in structure/syntax/vocabulary mirror a parallel structure in 

the aesthetic experience of the reader of a code-text. Such an aesthetic 

experience could be organized in terms of cognitive depths: reading 

(e.g. code is properly formatted, can be read), understanding (e.g. code 

communicates what it does), enlightening (code communicates more than 

what it does). This parallel structure also reflects the important fact that 

reading code is a different process than writing code. Indeed, while writing 

code can have similarities with writing prose or poetry, reading code, on the

other hand, is more akin to investigative work and dissection than to 

leisurely skimming over a novel. Further research on this is needed, 

particularly along the axes of linear/non-linear reading, the requirement (or 

not) of paratexts, as well as reader positions, which then ties back into the 

existence of social contexts of aesthetics.

At this point, this set of criteria for software developers confirms a close 

relationship between beauty and understanding (i.e. is beautiful that which 

I can easily understand and work with). Preliminary examination of the 

other groups of software practicioners also point to the presence of 

understanding as a writer and a reader engage with a code-text. For 



instance, for hackers, is beautiful that which challenges understanding, that

which is not understandable, either by removing agency, or by purposefully 

not assuming agency. For academics, is beautiful that which provides an 

understanding beyond what is immediately there, and opens up deeper 

insights into theoretical realms of computation, algorithms or language 

design. For artists, is beautiful that which offers a different, subjective 

understanding through poetic interpretation. Each of these approaches will 

be the subject of further research this semester.

Following this, arises the question of whether a similar set of aesthetic 

criteria can be used to elicit multiple kinds of understanding, or if separate 

kinds of understandings require separate kinds of aesthetic criteria? If 

providing the understanding of something is akin to the act of making clear 

of that thing, then one could see the art of programming as the art of the 

obvious, of the transparent. This requirement to make intelligible would go 

against certain definitions of art as a self-sustaining, self-referential 

practice, and would locate code between an art and a craft, perhaps even 

blurring the boundary between them. A piece of code which has to involve 

some concept to be understood implies that writing code is what I would 

call a functional aesthetic practice, an aesthetic practice which needs to do 

something in order to be appreciated as such. It could then help to 

reconsider the separation between arts and craft, and perhaps seeing art as

something which necessarily deals with the addition and/or modification of 

understanding? A similar problem about this dichotomy between art and 

craft can be seen in architecture is in a similar situation, further supported 

by the similarities in physical architecture and software architecture. 

Between craft and practice, architecture is first and foremost meant to be 

used; and architecture can also elicit similar (multiple) understandings.

A further implication would touch upon artistic practices in general. Do all 

aesthetic objects communicate some knowledge that is to be understood by 

the audience? And therefore, can it be said that a good artwork is an 



artwork which reaches beyond itself, and always refers to the “problem 

domain” (a metaphor for the “real world” in programming)? In order to 

approach this question, we must first inspect the relationship between code 

and literature.

Code and Literature

The relationship between writing and reading code and reading and writing 

literature, while much35 written36 about, doesn’t however seem immediately 

obvious, beyond the fact that both use words as their raw material to 

communicate concepts. Indeed, most literary theorists and humanities 

scholars focus on the literary implications of executed code, while often 

overlooking the potential aesthetic renewals which could stem from a closer

examination of source code. On the opposite, computer science 

practicioners have indeed claimed similarities between code and literature, 

often as statements within elaborate justification. Why exactly computer 

scientists do so could stem from reasons such as: legitimizing their field 

through connections with additional fields, pointing out the similar activities

of writing and reading, highlighting the fact that their activity is not just a 

scientific endeavour. However, while no consistent theory of source code as 

a subset of literature exists today, I would rather look at it as two separate 

endeavours, which nonetheless:

 use similar materials (languages, or coherent systems of syntactic 

tokens)

 involve similar processes and approaches (blank pages, drafts, attention

to details, recourse to imagination)

35 Matsumoto, Yukihiro, Treating Code As An Essay, in Beautiful Code, op. 
cit.

36 Knuth, Donald, Literate Programming (Lecture Notes), Center for the 
Study of Language and Inf, 1992.



 overcome similar problems (need to clarify complex cognitive 

structures, lack of clear communication between two subjective minds)

 and desire to achieve similar ends (share an understanding of a broader

concept).

These two endeavours can be placed along a gradient between personal 

interpretation and objective efficiency. Where different manifestations of 

writing code or writing literature stand depends on what they attempt at 

representing, at making understandable. For instance, if the aim is to make 

understandable the operations of a hardware timer, then the interpretation 

must be of the strictest nature37. The writing must also be subject to that 

requirement, in order to prevent any confusion in the reader and, 

ultimately, faulty usage with practical consequences. Further along that 

gradient, if the aim is to make understandable the implementation of a high-

level algorithm, or pattern (say, a regular expression search38), there is a 

little more room for an interpretative approach towards an understanding of

the idea of a regular expression, providing some agency to the reader to 

form a comprehensive mental model of a regular expression, rather than 

reading and assimilating an exhaustive one.

On the other side of this gradient, closer to the interpretation, that which is 

to be communicated is part of human endeavours (e.g. employee 

management systems, user-facing software, and more generally the kind of 

software which has hugely benefited from the OOP paradigm). Since part of 

the complexity of software resides in the necessity to encode discreetely 

that which is continuous, code gets closer to literature, drawing further 

from metaphors and narration in order to facilitate understanding. It does 

so as it inherently leaves room for uncertainty, for interpretation and for 

imagination with regards to what a user could do or would do, hinting at 
37 Neville-Neil, George V., Beautiful Code Exists, If You Know Where To 
Look, ACM Queue, Vol. 6, Issue 5, 2008.

38 Beautiful Code, op. cit.



broad themes and possibilities of action, on top of the strict operation of its 

own code. Beautiful code is code which allows this personal interpretation 

while leaving no doubt as to what it is currently doing.

The distinction that some of the more technically-savy practicioners operate

between code and comments illustrates this relationship quite well with the 

statement that code never lies, comments do. Comments, by virtue of being 

completely ignored by the compiler or interpreter, are the component of 

source code that is closest to prose. To what extent are comments helpful 

because they lie, or because of their unreliable nature? Comments are only 

necessary when one wants to explicit why a section of code does something.

The question why hints at broader, more metaphysical concerns, concerns 

that are harder to communicate through code, and easier to communicate 

through literature. Another example is that of Donald Knuth’s work literate 

programming39, which is a set of languages, tools and practices which 

attempts at establishing comments as the canonical source of any 

compilable or interpretable source code. The aim is to allow the writer to 

write in “plain English”, and then generate source code from this 

description. Such an approach both claims that there are ties between 

writing source code and writing texts, yet crystallizes the difference 

between both. Effectively, a .web file (to take the example of the first literate

programming processor) is but a markup language which weaves in both 

natural and machine languages but does only so superficially, ultimately 

splitting each of those languages in separate files (.tex and .pas, 

respectively). I would therefore argue that, given fact that literate 

programming can be seen as inserting code within literature, code and 

literature are distinct practices which nonetheless have the potential to 

mutually inform each other, as word-based crafts.

If there are indeed parallels that can be made between code and literature, 

without claiming that code is a new form of literature, to what extent does 

39 Knuth, Donald, Literate Programming, op. cit.



code and literature use the same techniques (of conceptual distancing, 

naming, etc.), and to what end? One approach would be to compare both 

practices in terms of metaphors: how they are used (to clarify or to 

mystify), and to what purpose (i.e. for which kind of understanding). 

Furthermore, it seems that, just as there isn’t a single kind of code, there 

also isn’t a single genre of literature. While examining parallels, it will be 

useful to acknowledge that code can draw from styles such as minimalism, 

absurdist fiction or technical/scientific writing. Without a single monolithic 

vector against which the beauty of a code-text is evaluated, this would 

assess such aesthetics along different axes, between craft, literature and 

engineering.

next steps

The work so far has established main aesthetic criteria for a particular kind 

of software practicioners: software developers constituting the vast majority

of people writing and reading source code. Through this endeavour, I have 

highlighted the role that these criteria have with regards to understanding 

source code, in terms of reducing cognitive friction and facilitating more or 

less strict interpretations of the concepts and ideas that are being 

constructed and communicated by the writer. These preliminary findings 

support a functional approach to aesthetics. This implies that aesthetics can

(and, in this specific context, should) have a transitive role: if the concept 

that they represent isn’t effective, or interesting or novel to the reader, then

the code will not be considered “beautiful”. The goal here is that code 

becomes “self-documenting”, “transparent”, in that it doesn’t bring too 

much attention to itself, but rather points to the problem that it is 

attempting to solve by showing what it does, how it does it and why. This 

corresponds to Nelson Goodman’s theory on the symbolic meaning of art40, 

as he argues that works of art, as an aesthetic manifestation, always 

communicates concepts to the viewer/reader, facilitated through formal 

40 Goodman, Nelson, op. cit.



cues through the use of denotation, connotation and representation. The 

practice of writing source code could therefore support a conception of 

works of art as useful and functional communication tools.

These cues, organized under the distinction of structure/syntax/vocabulary, 

can provide different depths of understanding, but it isn’t yet determined as

to whether it can provide different kinds of understandings, and whether 

the same set of critieria can help understand different concepts (between 

say, hardware architecture, algorithm implementation, real-world situation 

or poetic imagination). The immediate next aspect that I will be focusing on 

is therefore to highlight the aesthetic criteria which support two other 

communities of practice: hackers and artists. This will help identify to what 

extent aesthetics can operate across communities of practice, or to what 

extent these communities of practice operate under independent aesthetic 

standards. Particular attention will be paid to how each of these 

communities involve metaphors in their work (under what form and for 

which purpose). This will involve close readings of selected source code 

poems one one side and analysis of accounts and descriptions of “hacks” on 

the other side. The research questions will remain the same: what are 

practicioners trying to make understandable? and what aesthetic 

mechanisms are they using to do so?

Another direction in which to answer the potential cross-domain nature of 

aesthetic critieria is that of programming languages. I intend to further 

analyze the perceptions around beauty and languages. So far, it seems that 

there are some languages that are considered more beautiful than others 

(e.g. Ruby, Lisp vs. Java, JavaScript), and the reasons why that is could give 

further insight into the nature of aesthetic criteria in source code, 

particularly in further defining “elegance” and “clarity”, broad terms often 

employed by practicioners to describe beautiful code. The hypothesis here 

is that some languages are more prone to support aesthetic criteria for 

beautiful code, both intrinsically (through idiomatic features) and 



extrinsically (due to external discourses and paratexts confirming this 

“beauty”).

Finally, there needs to be additional research undertaken regarding 

metaphors, and how they relate to mental models and knowledge 

representation. While a broad field, I intend to approach it through literary 

theory, as well as through the small field of programming psychology. As 

explicited above, it seems that code and literature are only loosely related, 

more through the process of writing than the process of reading. The 

abundant use of metaphors in literature, and the essential quality of code to

execute commands which stand for something else (e.g. keywords such as 

open, close, listen, break, but also vocabularies created by the writers 

while naming variables, functions, classes) would be a fruitful terrain for a 

comparative examination. Such a comparison would help in defining exactly

what are the roles of metaphors in writing and reading code, how they are 

manifested through aesthetics and how they can illustrate the similarities 

and differences between code and literature.

final questions

 how should i approach metaphors? from a philosophical stand, a 

psychological one or a literary one? are there any references that I 

should be reading or looking at?

 should i also look into what metaphors are used to make sense of code? 

that is, metaphors that describe the act of writing/reading code itself, 

on top of metaphors which are used in the code


	The Aesthetics of Source Code - Pierre Depaz
	Further definition of topic and future outline of work - 08.2020
	Aesthetics and understanding
	Established software engineering practices
	The role of beauty in code
	Aesthetic criteria
	Aesthetics as a purposeful, functioning device
	Code and Literature
	next steps
	final questions



